Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Journal of Pharmaceutical Analysis ; (6): 444-451, 2020.
Article in Chinese | WPRIM | ID: wpr-865664

ABSTRACT

The harm of pathogenic bacteria to humans has promoted extensive research on physiological processes of pathogens, such as the mechanism of bacterial infection, antibiotic mode of action, and bacterial antimicrobial resistance. Most of these processes can be better investigated by timely tracking of fluorophore-derived antibiotics in living cells. In this paper, we will review the recent development of fluorescent antibiotics featuring the conjugation with various fluorophores, and focus on their applica-tions in fluorescent imaging and real-time detection for various physiological processes of bacteria in vivo.

2.
Einstein (Säo Paulo) ; 17(4): eAO4786, 2019. tab, graf
Article in English | LILACS | ID: biblio-1012010

ABSTRACT

ABSTRACT Objective: To evaluate the potential of magnetic hyperthermia using aminosilane-coated superparamagnetic iron oxide nanoparticles in glioblastoma tumor model. Methods: The aminosilane-coated superparamagnetic iron oxide nanoparticles were analyzed as to their stability in aqueous medium and their heating potential through specific absorption rate, when submitted to magnetic hyperthermia with different frequencies and intensities of alternating magnetic field. In magnetic hyperthermia in vitro assays, the C6 cells cultured and transduced with luciferase were analyzed by bioluminescence in the absence/presence of alternating magnetic field, and also with and without aminosilane-coated superparamagnetic iron oxide nanoparticles. In the in vivo study, the measurement of bioluminescence was performed 21 days after glioblastoma induction with C6 cells in rats. After 24 hours, the aminosilane-coated superparamagnetic iron oxide nanoparticles were implanted in animals, and magnetic hyperthermia was performed for 40 minutes, using the best conditions of frequency and intensity of alternating magnetic field tested in the in vitro study (the highest specific absorption rate value) and verified the difference of bioluminescence before and after magnetic hyperthermia. Results: The aminosilane-coated superparamagnetic iron oxide nanoparticles were stable, and their heating capacity increased along with higher frequency and intensity of alternating magnetic field. The magnetic hyperthermia application with 874kHz and 200 Gauss of alternating magnetic field determined the best value of specific absorption rate (194.917W/g). When these magnetic hyperthermia parameters were used in in vitro and in vivo analysis, resulted in cell death of 52.0% and 32.8%, respectively, detected by bioluminescence. Conclusion: The magnetic hyperthermia was promissing for the therapeutical process of glioblastoma tumors in animal model, using aminosilane-coated superparamagnetic iron oxide nanoparticles, which presented high specific absorption rate.


RESUMO Objetivo: Avaliar o potencial da técnica de magneto-hipertermia utilizando nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana em modelo de tumores de glioblastoma. Métodos: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram avaliadas quanto à sua estabilidade em meio aquoso e a seu potencial de aquecimento pela taxa de absorção específica, quando submetidas à magneto-hipertermia, com diferentes frequências e intensidades de campo magnético alternado. Nos ensaios de magneto-hipertermia in vitro, as células C6 cultivadas e transduzidas com luciferase foram avaliadas por bioluminescência na presença/ausência do campo magnético alternado, como também com e sem nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana. No estudo in vivo, a medida de bioluminescência foi adquirida no 21º dia após indução do glioblastoma com células C6 nos ratos. Após 24 horas, as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram implantadas no animal, tendo sido realizada a magneto-hipertermia por 40 minutos, nas melhores condições de frequência e intensidade de campo magnético alternado testado no estudo in vitro (maior valor da taxa de absorção específica); foi verificada a diferença do bioluminescência antes e após a magneto-hipertermia. Resultados: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana se mostraram estáveis, e sua capacidade de aquecimento aumentou com o incremento da frequência e da intensidade de campo magnético alternado. A aplicação da magneto-hipertermia, com 874kHz e 200 Gauss do campo magnético alternado, determinou o melhor valor da taxa de absorção específica (194,917W/g). Quando utilizados, estes parâmetros de magneto-hipertermia in vitro resultaram em morte celular de 52,0% e in vivo de 32,8% por bioluminescência. Conclusão: A técnica de magneto-hipertermia foi promissora para o processo terapêutico de tumores de glioblastoma no modelo animal utilizando as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana recobertas com aminosilana, que apresentaram alta taxa de absorção específica.


Subject(s)
Animals , Male , Brain Neoplasms/therapy , Ferric Compounds/therapeutic use , Glioblastoma/therapy , Magnetic Field Therapy/methods , Magnetite Nanoparticles/therapeutic use , Hyperthermia, Induced/methods , Reference Values , Time Factors , Body Temperature , Ferric Compounds/chemistry , Reproducibility of Results , Analysis of Variance , Treatment Outcome , Rats, Wistar , Cell Line, Tumor , Disease Models, Animal , Magnetite Nanoparticles/chemistry , Luminescent Measurements
3.
Asian Journal of Andrology ; (6): 442-447, 2018.
Article in Chinese | WPRIM | ID: wpr-842617

ABSTRACT

Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.

4.
Chinese Journal of Ultrasonography ; (12): 905-910, 2018.
Article in Chinese | WPRIM | ID: wpr-707745

ABSTRACT

Objective To detect the efficiency of the newly developed PLGA/IO MPs in tracking tendon stem cells (TSCs) by magnetic resonance (MR) and photoacoustic (PA) imaging . Methods Both PLAG/IO MPs and TSCs were prepared and acquired according to the previous study ,and TSCs were incubated with PLGA/IO MPs for labeling .TSCs were collected for MR and PA imaging ,prussian blue staining was performed ,and the iron concentration of labeled TSCs was determined using inductively coupled plasma optical emission spectrometry ( ICP-OES ) at 3 ,7 ,14 ,21 and 28 days after labeling respectively . The rotator cuff injury model was built on the right side of SD rats by surgery and the labeled TSCs were implanted instantly . Dual-modal MR/PA imaging was performed to observe the implanted labeled TSCs at day 3 ,7 ,14 ,21 and 28 after implantation respectively . Results Along with the increase of labeling time ,both MR and PA signal of labeled TSCs decreased gradually ,and the amount of intracellular Fe loading was gradually decreased . At day 28 ,the difference of Fe concentration per cell between labeled TSCs and non-labeled TSCs was not significant (1 .45 pg Fe/cell vs 1 .17 pg Fe/cell , P >0 .05) . MR and PA imaging allowed a long-term tracking of labeled TSCs for 21 and 7 days respectively in the rat rotator cuff injury model . Conclusions PLGA/IO MPs are able to label TSCs for up to 21 days ,and dual-modal MR/PA imaging could be used to track the labeled TSCs in the rat rotator cuff injury model .

5.
Asian Journal of Andrology ; (6): 442-447, 2018.
Article in English | WPRIM | ID: wpr-1009632

ABSTRACT

Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.


Subject(s)
Animals , Male , Rats , Cell Tracking , Disease Models, Animal , Erectile Dysfunction/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Penis/innervation , Peripheral Nerve Injuries/complications , Rats, Sprague-Dawley , Treatment Outcome
6.
Yonsei Medical Journal ; : 51-58, 2017.
Article in English | WPRIM | ID: wpr-65063

ABSTRACT

PURPOSE: We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. MATERIALS AND METHODS: Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. RESULTS: Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. CONCLUSION: Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety.


Subject(s)
Animals , Female , Humans , Male , Mice , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Cell Tracking/methods , Colonic Neoplasms/diagnostic imaging , Contrast Media/administration & dosage , Disease Models, Animal , Ferritins/administration & dosage , Genes, Reporter , Glioma/diagnostic imaging , Injections, Intravenous , Macrophages , Magnetic Resonance Imaging/methods , Neoplasm Transplantation , Skin Neoplasms/diagnostic imaging , Time Factors
7.
Tuberculosis and Respiratory Diseases ; : 116-123, 2014.
Article in English | WPRIM | ID: wpr-103201

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. METHODS: We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. RESULTS: The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. CONCLUSION: In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.


Subject(s)
Animals , Humans , Mice , Adipose Tissue , Bone Marrow , Cell Tracking , Emphysema , Fluorescence , Injections, Intravenous , Kidney , Liver , Lung , Mesenchymal Stem Cells , Optical Imaging , Pulmonary Disease, Chronic Obstructive , Quantum Dots , Real-Time Polymerase Chain Reaction , Spleen
8.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 181-191, 2013.
Article in English | WPRIM | ID: wpr-93363

ABSTRACT

PURPOSE: To evaluate the usefulness of in vivo magnetic resonance (MR) imaging for tracking intravenously injected superparamagnetic iron oxide (SPIO)-labeled human umbilical vein endothelial cells (HUVECs) in an acute renal failure (ARF) rat model. MATERIALS AND METHODS: HUVECs were labeled with SPIO and poly-L-lysine (PLL) complex. Relaxation rates at 1.5-T MR, cell viability, and labeling stability were assessed. HUVECs were injected into the tail vein of ARF rats (labeled cells in 10 rats, unlabeled cells in 2 rats). Follow-up serial T2*-weighted gradient-echo MR imaging was performed at 1, 3, 5 and 7 days after injection, and the MR findings were compared with histologic findings. RESULTS: There was an average of 98.4+/-2.4% Prussian blue stain-positive cells after labeling with SPIO-PLL complex. Relaxation rates (R2*) of all cultured HUVECs at day 3 and 5 were not markedly decreased compared with that at day 1. The stability of SPIO in HUVECs was maintained during the proliferation of HUVECs in culture media. In the presence of left unilateral renal artery ischemia, T2*-weighted MR imaging performed 1 day after the intravenous injection of labeled HUVECs revealed a significant signal intensity (SI) loss exclusively in the left renal outer medulla regions, but not in the right kidney. The MR imaging findings at days 3, 5 and 7 after intravenous injection of HUVECs showed a SI loss in the outer medulla regions of the ischemically injured kidney, but the SI progressively recovered with time and the right kidney did not have a significant change in SI in the same period. Upon histologic analysis, the SI loss on MR images was correspondent to the presence of Prussian blue stained cells, primarily in the renal outer medulla. CONCLUSION: MR imaging appears to be useful for in vivo monitoring of intravenously injected SPIO-labeled HUVECs in an ischemically injured rat kidney.


Subject(s)
Animals , Rats , Acute Kidney Injury , Cell Survival , Cell Tracking , Culture Media , Endothelial Cells , Ferric Compounds , Ferrocyanides , Follow-Up Studies , Human Umbilical Vein Endothelial Cells , Injections, Intravenous , Iron , Ischemia , Kidney , Magnetic Resonance Spectroscopy , Magnets , Relaxation , Renal Artery , Track and Field , Umbilical Veins , Veins
9.
Immune Network ; : 223-229, 2012.
Article in English | WPRIM | ID: wpr-130642

ABSTRACT

Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic wholebody imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.


Subject(s)
Animals , Apoptosis , Cell Proliferation , Cell Tracking , Dendritic Cells , Genes, Reporter , Immunotherapy , Lymphocytes , Macrophages , Molecular Imaging , Optical Imaging , Organothiophosphorus Compounds , Track and Field
10.
Immune Network ; : 223-229, 2012.
Article in English | WPRIM | ID: wpr-130635

ABSTRACT

Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic wholebody imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.


Subject(s)
Animals , Apoptosis , Cell Proliferation , Cell Tracking , Dendritic Cells , Genes, Reporter , Immunotherapy , Lymphocytes , Macrophages , Molecular Imaging , Optical Imaging , Organothiophosphorus Compounds , Track and Field
SELECTION OF CITATIONS
SEARCH DETAIL