Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e19723, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394035

ABSTRACT

Abstract Passiflora nitida Kunth, an Amazonian Passiflora species, is little studied, although the specie's high biological potential. Herein the plant's pharmacognostic characterization, extract production, antioxidant potential evaluation, and application of this extract in cosmetic products is reported. The physical chemical parameters analyzed were particle size by sieve analysis, loss through drying, extractive yield, total ash content, laser granulometry, specific surface area and pore diameter (SBET), differential scanning calorimetry, thermogravimetry (TG), and wave dispersive X-Ray fluorescence (WDXRF). Total phenol/flavonoid content, LC-MS/MS analysis, DPPH and ABTS antioxidant radical assays, cytotoxicity, melanin, and tyrosinase inhibition in melanocytes test provided evidence to determine the content of the major constituent. P. nitida dry extract provided a fine powder with mesopores determined by SBET, with the TG curve showing five stages of mass loss. The antioxidant potential ranged between 23.5-31.5 mg∙mL-1 and tyrosinase inhibition between 400-654 µg∙mL-1. The species presented an antimelanogenic effect and an inhibitory activity of cellular tyrosinase (26.6%) at 25 µg/mL. The LC-MS/MS analysis of the spray-dried extract displayed the main and minor phenolic compounds constituting this sample. The results indicate that P. nitida extract has promising features for the development of cosmetic formulations


Subject(s)
Plant Extracts/analysis , Plant Leaves/adverse effects , Cosmetics/classification , Passiflora/classification , Thermogravimetry/methods , X-Rays/adverse effects , Calorimetry, Differential Scanning/methods , Monophenol Monooxygenase/antagonists & inhibitors , Phenolic Compounds , Melanins , Antioxidants/adverse effects
2.
Int J Pharm Pharm Sci ; 2020 May; 12(5): 85-89
Article | IMSEAR | ID: sea-206099

ABSTRACT

Objective: The objectives of this study were to quantify γ-oryzanol in an ethanolic extract of Oryza sativa L. Indica (black rice) bran and to evaluate its activity as a tyrosinase inhibitor. Methods: Black rice bran was extracted via maceration in 96% ethanol, and the γ-oryzanol concentration in the extract was measured through high-performance liquid chromatography. The applicability of the extract as a skin lightening agent was determined by evaluating its tyrosinase inhibition activity. Results: The dry rice bran contained 118.572 mg/g of γ-oryzanol, and the extract inhibited tyrosinase activity at an IC50 of 74.8%. Conclusion: The black rice bran extract was sufficiently potent for use in skin lightening formulations.

3.
China Journal of Chinese Materia Medica ; (24): 5898-5916, 2020.
Article in Chinese | WPRIM | ID: wpr-878852

ABSTRACT

Melanin is an important factor affecting human skin color. This study defines its synthetic pathways and regulatory pathways have the practical significance for the treatment of diseases caused by pigmentation problems, such as chloasma. Besides, it also provides a theoretical basis for screening out melanin inhibitors and developing whitening and freckle products. At present, the melanin inhibitors used in whitening and freckle products mainly come from natural products and traditional Chinese medicine. This article first introduces the melanin biosynthesis pathway with tyrosinase as the core, defines the synthesis, transport and catalytic activity of tyrosinase as the three key factors affecting melanin synthesis, and then reviews two common types of melanin inhibitors, namely tyrosinase synthesis inhibitors and tyrosinase inhibitors derived from natural products and traditional Chinese medicine. This article provides guidance for the development of new melanin inhibitors, and puts forward the idea for combining and synergizing inhibitors according to different mechanisms, in order to develop new whitening formulas.


Subject(s)
Humans , Biological Products , Enzyme Inhibitors , Medicine, Chinese Traditional , Melanins , Monophenol Monooxygenase
4.
Journal of Biomedical Engineering ; (6): 254-259, 2019.
Article in Chinese | WPRIM | ID: wpr-774213

ABSTRACT

Zinc oxide quantum dots (ZnO QDs) were synthesized by gel-sol method and employed as the transdermal aloesin (Alo) carriers. ZnO QDs were surface-functionalized with amino using aminopropyltriethoxysilane (APTES). Alo was covalently bonded on the surface of ZnO QDs via N,N'-carbonyldiimidazole to obtain Alo NPs, which were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analyzer (TGA). TEM images showed that ZnO QDs were analogously sphere and monodisperse with a reasonably narrow size distribution, of which was around 4 nm. The size of Alo NPs increased to around 8 nm due to the surface modification. The intense bands at around 3 400 cm and 1 200 cm in the FTIR spectrum of Alo NPs from the vibration of -OH indicated the linkage of Alo on the surface of ZnO QDs. The results of TGA analysis showed that the mass ratio of ZnO QDs and Alo were 39.27% and 35.14%, respectively. The penetration of Alo NPs was much higher than raw Alo according to the passive penetration experiments with Franz-type diffusion cells instrument using full-thickness cavy skin, which manifested the improvement of the penetration for Alo delivered by ZnO QDs. The pH-controlled drug release behavior was investigated. At pH 7.4, only a small amount of Alo (1.45% ± 0.21%) had been released after 2 h. In contrast, as incubation at pH 5.0 of which pH was similar to endosomal environment, Alo was released very fast (87.63% ± 0.46% in 2 h) from Alo NPs, confirming that Alo NPs could response to the pH and realize the intracellular drug release. The inhibitory effect of Alo NPs on tyrosinase was in a dose dependent manner. When the concentration of Alo NPs was 12.5 μg/mL, the inhibition rate was up to 40.32% ± 1.57%. All the results show that the Alo NPs hold a great potential in transdermal tyrosinase inhibition.


Subject(s)
Animals , Administration, Cutaneous , Chromones , Drug Delivery Systems , Glucosides , Guinea Pigs , Monophenol Monooxygenase , Metabolism , Nanoparticles , Quantum Dots , Zinc Oxide
5.
Mycobiology ; : 112-119, 2019.
Article in English | WPRIM | ID: wpr-760520

ABSTRACT

Compounds from Lingzhi has been demonstrated the ability for inhibiting tyrosinase (a key enzyme in melanogenesis) activity. In this study, we investigated the anti-melanogenic activity from the submerged mycelial culture of Ganoderma weberianum and elucidated the skin lightening mechanism by B16-F10 murine melanoma cells. From the cellular context, several fractionated mycelium samples exhibited anti-melanogenic activity by reducing more than 40% extracellular melanin content of B16-F10 melanoma cells. In particular, the fractionated chloroform extract (CF-F3) inhibited both secreted and intracellular melanin with the lowest dosage (25 ppm). Further analysis demonstrated that CF-F3 inhibited cellular tyrosinase activity without altering its protein expression. Taken together, our study has demonstrated that the chemical extracts from submerged mycelial culture of G. weberianum have the potential to serve as an alternative anti-melanogenic agent.


Subject(s)
Chloroform , Ganoderma , Melanins , Melanoma , Monophenol Monooxygenase , Mycelium , Reishi , Skin
6.
Acta Pharmaceutica Sinica B ; (6): 141-145, 2014.
Article in English | WPRIM | ID: wpr-329743

ABSTRACT

2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L) in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH)-stimulated melanin formation in intact B16 melanoma cells.

7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 616-620, 2013.
Article in English | WPRIM | ID: wpr-812650

ABSTRACT

In this study, lyophilized and methanolic extracts of aloe gel from different germplasms were evaluated for their potential to inhibit mushroom tyrosinase activity. The results showed potent inhibitory effect of Aloe vera gel extracts on L-dihydroxyphenylalanine (L-DOPA) oxidation catalyzed by tyrosinase in a dose-dependent manner. Significant differences in % inhibition of tyrosinase among the extraction methods and the germplasms were observed. The relative performance of the germplasms was evaluated with the help of posthoc multicomparison test. The methanolic extract was more effective than the lyophilized crude gel in all the germplasms. The inhibitory effect of the lyophilized gel and methanolic extract tested from five germplasms followed the order: RM > TN > S24 > OR > RJN. The germplasm RM showed the highest tyrosinase inhibition, and the maximum % inhibition noted was 26.04% and 41.18%, respectively for the lyophilized and methanolic extracts at 6 mg · mL(-1) concentration. Lineweaver-Burk plots of the different concentrations of L-DOPA in the absence and presence of lyophilized gel extract showed competitive inhibition of mushroom tyrosinase in all the germplasms. This study suggests that the germplasm RM could potentially be used for the isolation and identification of the effective tyrosinase inhibitory component, and ascertains the critical role of selecting the best source of germplasm for natural product isolation and characterization.


Subject(s)
Agaricales , Aloe , Chemistry , Enzyme Inhibitors , Chemistry , Fungal Proteins , Chemistry , Gels , Chemistry , Kinetics , Monophenol Monooxygenase , Chemistry , Plant Extracts , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL