Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Acta cir. bras ; 33(12): 1043-1051, Dec. 2018. graf
Article in English | LILACS | ID: biblio-973484

ABSTRACT

Abstract Purpose: To analyze the effect of methylene blue (MB) therapy during the liver ischemia-reperfusion injury (I/R) process. Methods: Thirty-five male Wistar rats were used, (70%) submitted to partial ischemia (IR) or not (NIR) (30%) were obtained from the same animal. These animals were divided into six groups: 1) Sham (SH), 2) Sham with MB (SH-MB); 3) I/R, submitted to 60 minutes of partial ischemia and 15 minutes of reperfusion; 4) NI/R, without I/R obtained from the same animal of group I/R; 5) I/R-MB submitted to I/R and MB and 6) NI/R-MB, without I/R. Mitochondrial function was evaluated. Osmotic swelling of mitochondria as well as the determination of malondialdehyde (MDA) was evaluated. Serum (ALT/AST) dosages were also performed. MB was used at the concentration of 15mg/kg, 15 minutes before hepatic reperfusion. Statistical analysis was done by the Mann Whitney test at 5%. Results: State 3 shows inhibition in all ischemic groups. State 4 was increased in all groups, except the I/R-MB and NI/R-MB groups. RCR showed a decrease in all I/R and NI/R groups. Mitochondrial osmotic swelling showed an increase in all I/R NI/R groups in the presence or absence of MB. About MDA, there was a decrease in SH values in the presence of MB and this decrease was maintained in the I/R group. AST levels were increased in all ischemic with or without MB. Conclusions: The methylene blue was not able to restore the mitochondrial parameters studied. Also, it was able to decrease lipid peroxidation, preventing the formation of reactive oxygen species.


Subject(s)
Humans , Animals , Male , Reperfusion Injury/prevention & control , Enzyme Inhibitors/therapeutic use , Liver/blood supply , Methylene Blue/therapeutic use , Oxygen Consumption , Aspartate Aminotransferases/blood , Reference Values , Time Factors , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Lipid Peroxidation/drug effects , Reperfusion Injury/metabolism , Reproducibility of Results , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Rats, Wistar , Cell Respiration , Alanine Transaminase/blood , Enzyme Inhibitors/pharmacology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Liver/metabolism , Malondialdehyde/analysis , Methylene Blue/pharmacology , Mitochondrial Swelling/drug effects
2.
Biol. Res ; 49: 1-13, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950847

ABSTRACT

BACKGROUND: Despite manifold benefits of nanoparticles (NPs), less information on the risks of NPs to human health and environment has been studied. Cobalt oxide nanoparticles (Co3O4-NPs) have been reported to cause toxicity in several organisms. In this study, we have investigated the role of Co3O4-NPs in inducing phytotoxicity, cellular DNA damage and apoptosis in eggplant (Solanum melongena L. cv. Violetta lunga 2). To the best of our knowledge, this is the first report on Co3O4-NPs showing phytotoxicity in eggplant. RESULTS: The data revealed that eggplant seeds treated with Co3O4-NPs for 2 h at a concentration of 1.0 mg/ml retarded root length by 81.5 % upon 7 days incubation in a moist chamber. Ultrastructural analysis by transmission electron microscopy (TEM) demonstrated the uptake and translocation of Co3O4-NPs into the cytoplasm. Intracellular presence of Co3O4-NPs triggered subcellular changes such as degeneration of mitochondrial cristae, abundance of peroxisomes and excessive vacuolization. Flow cytometric analysis of Co3O4-NPs (1.0 mg/ml) treated root protoplasts revealed 157, 282 and 178 % increase in reactive oxygen species (ROS), membrane potential (APm) and nitric oxide (NO), respectively. Besides, the esterase activity in treated protoplasts was also found compromised. About 2.4-fold greater level of DNA damage, as compared to untreated control was observed in Comet assay, and 73.2 % of Co3O4-NPs treated cells appeared apoptotic in flow cytometry based cell cycle analysis. CONCLUSION: This study demonstrate the phytotoxic potential of Co3O4-NPs in terms of reduction in seed germination, root growth, greater level of DNA and mitochondrial damage, oxidative stress and cell death in eggplant. The data generated from this study will provide a strong background to draw attention on Co3O4-NPs environmental hazards to vegetable crops.


Subject(s)
Oxides/toxicity , DNA Damage/drug effects , Cell Death/drug effects , Cobalt/toxicity , Solanum melongena/drug effects , Nanoparticles/toxicity , Mitochondrial Swelling/drug effects , Nitric Oxide/metabolism , Oxides/metabolism , Analysis of Variance , Reactive Oxygen Species/metabolism , Cobalt/metabolism , Comet Assay , Solanum melongena/metabolism , Microscopy, Electron, Transmission , Nanoparticles/metabolism , Flow Cytometry , Mitochondrial Swelling/physiology
3.
Acta cir. bras ; 31(supl.1): 40-44, 2016. graf
Article in English | LILACS | ID: lil-779759

ABSTRACT

PURPOSE: To assess the effect of two laser wavelengths, either separate or combined, on intact rat livers. METHOD: Nineteen male Wistar rats (200-300 g) were submitted to laser irradiation at 5 different sites on the liver surface.Wavelengths 660 and 780 nm were used, with a dose of irradiation of 60 J/cm2/site.The animals were divided into the groups:control (C) and animals irradiated with 660 nm laser (L1), with 780 nm laser (L2) or withboth wavelengths (L3).Mitochondrial function, mitochondrial swelling, and hepatocellular malondialdehyde (MDA) levels were determined.Data were analyzed by the Mann-Whitney test, with the level of significance set at 5%. RESULTS: There was a reduction of ADP-activated respiration (state 3) in group L1 compared to group C (p=0.0016), whereas the values of group L2 were similar to control.Group L3 also showed a reduction of state 3 (p=0.0159).There was a reduction of RCR in group L1 compared to control (p=0.0001) and to group L2 (p=0.0040).Mitochondrial swelling only differed between group L3 and control (p=0.0286).There was a increase in MDA levels in group L3 compared to control (p=0.0476) and to group L2 (p=0.0286) and in group L1 compared to group L2 (p=0.0132). CONCLUSION: Although laser irradiation reduced mitochondrial function,it did not interfere with the hepatocellular energy status.


Subject(s)
Animals , Male , Mitochondria, Liver/radiation effects , Oxidative Stress/radiation effects , Lasers, Semiconductor , Liver/radiation effects , Radiation Dosage , Spectrophotometry , Time Factors , Rats, Wistar , Low-Level Light Therapy , Dose-Response Relationship, Radiation , Malondialdehyde/analysis , Mitochondrial Swelling/drug effects
4.
An. acad. bras. ciênc ; 78(3): 505-514, Sept. 2006. graf
Article in English | LILACS | ID: lil-433717

ABSTRACT

Desequilíbrio/acúmulo de ferro tem sido implicado em injúria oxidativa associada a diversas doenças degenerativas tais como, hemocromatose hereditária, b-talassemia e ataxia de Friedreich. As mitocôndrias são particularmente sensíveis a estresse oxidativo induzido por ferro - um carregamento alto de ferro em mitocôndrias isoladas pode causar uma extensiva peroxidação lipídica e a permeabilização de membrana. Nesse estudo, nós detectamos e caracterizamos danos do DNA mitocondrial em mitocôndrias isoladas de fígado de rato, expostas ao complexo Fe2+-citrato, um dos complexos de baixo peso molecular. A intensa fragmentação do DNA foi induzida após a incubação das mitocôndrias com o complexo de ferro. A detecção de finais 3' de fosfoglicolato nas quebras de fitas de DNA mitocondrial pelo ensaio 32P-postlabeling sugere um envolvimento de radicais hidroxila na fragmentação do DNA induzido por complexo Fe2+-citrato. Os níveis elevados de 8-oxo-7,8-diidro-2'-desoxiguanosina também sugerem que o estresse oxidativo induzido por Fe2+-citrato causa danos no DNA mitocondrial. Em conclusão, nossos resultados mostram que a peroxidação lipídica mediada por ferro esteve associada com severos danos do DNA mitocondrial derivados de ataque direto das espécies reativas de oxigênio.


Subject(s)
Animals , Male , Rats , DNA Damage , DNA, Mitochondrial/drug effects , Ferrous Compounds/pharmacology , Lipid Peroxidation/drug effects , Mitochondria, Liver/drug effects , DNA, Mitochondrial/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Swelling/drug effects , Rats, Wistar
5.
Indian J Physiol Pharmacol ; 2002 Jul; 46(3): 343-8
Article in English | IMSEAR | ID: sea-107898

ABSTRACT

The effect of various concentrations of ursodeoxycholic acid (UDCA), a potent hepatoprotective agent on hydrogen peroxide-induced mitochondrial swelling was evaluated in vitro to find out the mechanism of action of the drug. Aliquots of sheep liver mitochondria were pre-incubated with various concentrations of UDCA [0-600 micrograms] and swelling was induced by hydrogen peroxide [1 mM]. Swelling was assessed at various time intervals and lipid peroxide, reduced glutathione status were also evaluated simultaneously. UDCA minimized hydrogen peroxide-induced swelling in a dose-dependent manner. Time-dependent elevation in the level of lipid peroxides was noted in mitochondria treated with hydrogen peroxide and this elevation was minimized in UDCA pre-treatment. UDCA also maintains the reduced glutathione level in mitochondria. UDCA acts against the oxidative stress imposed in liver mitochondria. It reduces lipid peroxidation-induced abnormalities such as swelling and thiol group depletion and the anti lipid peroxidative efficacy of the drug may be related to its hydrophilic nature which might protect the hydrophobic regions of the mitochondrial membranes which are prone for free radical-mediated reactions.


Subject(s)
Animals , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Lipid Peroxidation , Mitochondria, Liver/drug effects , Mitochondrial Swelling/drug effects , Sheep , Time Factors , Ursodeoxycholic Acid/pharmacology
6.
Indian J Exp Biol ; 1993 Mar; 31(3): 297-8
Article in English | IMSEAR | ID: sea-60449

ABSTRACT

Effect of alpha-tocopherol on doxorubicin-induced swelling in rat heart mitochondria was studied in vitro. Mitochondria was isolated from control and alpha-tocopherol treated rats. Various concentrations of doxorubicin were added to mitochondrial suspension. Swelling, lipid peroxidation and thiol depletion were measured. Concentration and time dependent increase in swelling was noted with increase in lipid peroxidation and thiol depletion in mitochondria isolated from control rats. In alpha-tocopherol treatment, thiol depletion is significantly prevented with reduced lipid peroxidation and swelling.


Subject(s)
Animals , Doxorubicin/antagonists & inhibitors , Lipid Peroxidation/drug effects , Male , Mitochondria, Heart/drug effects , Mitochondrial Swelling/drug effects , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , Vitamin E/pharmacology
7.
Indian J Biochem Biophys ; 1992 Apr; 29(2): 103-14
Article in English | IMSEAR | ID: sea-28883

ABSTRACT

Metabolically-induced (spontaneous) high amplitude swelling of mitochondria has been shown to be due to a serial disruption of the mitochondrial membranes [D. Sambasivarao & V. Sitaramam (1985), Biochim Biophys Acta, 806, 195-209]. Phosphate- and arsenate-induced swelling was investigated in mitochondria to evaluate the role of phosphate transport in the instability created in the mitochondrial membranes. Phosphate-induced swelling in respiring mitochondria was similar to spontaneous swelling. Both represent essentially colloidal swelling due to the variable porosity induced in the inner membrane to polyols by respiration. Swelling of non-respiring mitochondria at high ammonium phosphate concentrations was, on the other hand, primarily due to high permeability to phosphate. This membrane instability created by phosphate transport in the surrounding lipid involves neither the endogenous nor the exogenous Ca2+.


Subject(s)
Animals , Intracellular Membranes/drug effects , Mannitol/pharmacology , Mitochondria, Liver/physiology , Mitochondrial Swelling/drug effects , Oxygen Consumption , Phosphates/metabolism , Rats , Sucrose/pharmacology
11.
Indian J Exp Biol ; 1971 Oct; 9(4): 481-4
Article in English | IMSEAR | ID: sea-62747
SELECTION OF CITATIONS
SEARCH DETAIL