ABSTRACT
This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.
Subject(s)
Animals , Aquaporin 4/genetics , Astrocytes , Brain Edema/drug therapy , Brain Ischemia/metabolism , Flavonoids , Infarction, Middle Cerebral Artery/drug therapy , Rats , Rats, Sprague-Dawley , Reperfusion , TRPV Cation Channels/therapeutic useABSTRACT
Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.
Subject(s)
Animals , Astrocytes/metabolism , DNA Demethylation , Epigenesis, Genetic , GATA1 Transcription Factor/metabolism , Inflammation/metabolism , Oligodeoxyribonucleotides/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/metabolism , Visceral Pain/metabolismABSTRACT
Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.
Subject(s)
Animals , Astrocytes , Hippocampus/physiology , Humans , Memory, Short-Term/physiology , Mice , Neurons/physiology , Population DynamicsABSTRACT
Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.
Subject(s)
Astrocytes , Cell Differentiation , Cerebral Cortex , Humans , Neuroglia , OligodendrogliaABSTRACT
High mobility group box 1 (HMGB1) has been reported to play an important role in experimental autoimmune encephalomyelitis (EAE). Astrocytes are important components of neurovascular units and tightly appose the endothelial cells of microvessels by their perivascular endfeet and directly regulate the functions of the blood-brain barrier. Astrocytes express more HMGB1 during EAE while the exact roles of astrocytic HMGB1 in EAE have not been well elucidated. Here, using conditional-knockout mice, we found that astrocytic HMGB1 depletion decreased morbidity, delayed the onset time, and reduced the disease score and demyelination of EAE. Meanwhile, there were fewer immune cells, especially pathogenic T cells infiltration in the central nervous system of astrocytic HMGB1 conditional-knockout EAE mice, accompanied by up-regulated expression of the tight-junction protein Claudin5 and down-regulated expression of the cell adhesion molecules ICAM1 and VCAM1 in vivo. In vitro, HMGB1 released from astrocytes decreased Claudin5 while increased ICAM1 and VCAM1 expressed by brain microvascular endothelial cells (BMECs) through TLR4 or RAGE. Taken together, our results demonstrate that HMGB1 derived from astrocytes aggravates EAE by directly influencing the immune cell infiltration-associated functions of BMECs.
Subject(s)
Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Astrocytes/metabolism , HMGB1 Protein/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Blood-Brain Barrier/metabolismABSTRACT
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Subject(s)
Astrocytes , Brain Injuries, Traumatic , Fear , Humans , Stress Disorders, Post-Traumatic/therapyABSTRACT
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Subject(s)
Animals , Animals, Newborn , Astrocytes/pathology , Brain/pathology , Brain Injuries/pathology , Glucose , Hypoxia , Hypoxia-Ischemia, Brain/drug therapy , Mice , Neuroinflammatory Diseases , Neuroprotective Agents/therapeutic use , Oxygen/therapeutic useABSTRACT
ABSTRACT. Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were not evaluated in postmortem brain tissue. Objective: We aimed to evaluate, by immunohistochemistry, astrocytes, tyrosine hydroxylase (TH) and structural proteins expression (neurofilaments and microtubules — MAP2) changes in postmortem brain samples of individuals with Lewy body pathology. Methods: Braak PD stage≥III samples, classified by neuropathology analysis, from The Biobank for Aging Studies were classified into active (n=12) and non-active (n=12) groups, according to physical activity lifestyle, and paired by age, sex and Braak staging. Substantia nigra and basal ganglia were evaluated. Results: Groups were not different in terms of age or gender and had similar PD neuropathological burden (p=1.00). We observed higher TH expression in the active group in the substantia nigra and the basal ganglia (p=0.04). Astrocytes was greater in the non-active subjects in the midbrain (p=0.03) and basal ganglia (p=0.0004). MAP2 levels were higher for non-active participants in the basal ganglia (p=0.003) and similar between groups in the substantia nigra (p=0.46). Neurofilament levels for non-active participants were higher in the substantia nigra (p=0.006) but not in the basal ganglia (p=0.24). Conclusion: Active lifestyle seems to promote positive effects on brain by maintaining dopamine synthesis and structural protein expression in the nigrostriatal system and decrease astrogliosis in subjects with the same PD neuropathology burden.
RESUMO. Estudos dos efeitos da atividade física relataram melhora nos sintomas e na qualidade de vida de pacientes com doença de Parkinson (DP). Além disso, alterações morfológicas do cérebro após o exercício físico foram relatadas em modelos animais da DP. No entanto, essas mudanças relacionadas ao estilo de vida não foram avaliadas em tecido cerebral post-mortem. Objetivo: Avaliar a expressão de astrócitos, tirosina hidroxilase (TH) e a expressão de proteínas estruturais (neurofilamentos e microtúbulos — MAP2) por imuno-histoquímica, em amostras cerebrais post-mortem de indivíduos com corpos de Lewy. Métodos: Amostras com estágio de Braak para DP≥III, classificação neuropatológica, fornecidas pelo biobanco de estudos do envelhecimento foram classificadas em grupos ativos (n=12) e não ativos (n=12), de acordo com o estilo de vida (atividade física), e pareados por idade, sexo e estadiamento de Braak. Analisou-se a substância negra e gânglios da base. Resultados: Idade, sexo e classificação para DP foram semelhantes (p=1,00). Observou-se maior expressão de TH no grupo ativo (p=0,04). Amostras de não ativos revelaram maior expressão de astrócitos no mesencéfalo (p=0,03) e nos gânglios da base (p=0,0004); MAP2 nos gânglios da base (p=0,003); os níveis de neurofilamentos foram maiores na substância negra (p=0,006). Conclusão: O estilo de vida ativo parece promover efeitos positivos no cérebro, mantendo a síntese de dopamina e a expressão estrutural de proteínas no sistema nigrostriatal e com diminuição da ativação de astrócitos em indivíduos com a mesma classificação neuropatológica para a DP.
Subject(s)
Humans , Parkinson Disease , Lewy Bodies , Autopsy , Aging , Dopamine , Astrocytes , Life StyleABSTRACT
Epilepsy is a brain condition characterized by the recurrence of unprovoked seizures. Recent studies have shown that complement component 3 (C3) aggravate the neuronal injury in epilepsy. And our previous studies revealed that TRPV1 (transient receptor potential vanilloid type 1) is involved in epilepsy. Whether complement C3 regulation of neuronal injury is related to the activation of TRPV1 during epilepsy is not fully understood. We found that in a mouse model of status epilepticus (SE), complement C3 derived from astrocytes was increased and aggravated neuronal injury, and that TRPV1-knockout rescued neurons from the injury induced by complement C3. Circular RNAs are abundant in the brain, and the reduction of circRad52 caused by complement C3 promoted the expression of TRPV1 and exacerbated neuronal injury. Mechanistically, disorders of neuron-glia interaction mediated by the C3-TRPV1 signaling pathway may be important for the induction of neuronal injury. This study provides support for the hypothesis that the C3-TRPV1 pathway is involved in the prevention and treatment of neuronal injury and cognitive disorders.
Subject(s)
Animals , Astrocytes/metabolism , Complement C3/metabolism , Epilepsy , Mice , Neurons/pathology , Status Epilepticus , TRPV Cation Channels/metabolismABSTRACT
Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer's disease (AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast burden on human society. Interestingly, correlational research on depression and AD has shown that depression might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the progression of depression and AD. We herein review the current findings on the roles and mechanisms of astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these diseases by targeting astrocytes.
Subject(s)
Alzheimer Disease , Astrocytes , Depression , Humans , NeuronsABSTRACT
OBJECTIVE@#To investigate the mechanisms underlying elemene-induced analgesia in rats with spared nerve injury (SNI).@*METHODS@#Sixty-five rats were equally divided into 5 groups using a random number table: naive group, sham group, SNI group, SNI + elemene (40 mg·kg@*RESULTS@#The SNI rat model exhibited a significant decrease in paw withdrawal threshold and exploratory behaviour in the EPM (P<0.05). Consecutive administration of elemene alleviated SNI-induced mechanical allodynia and anxiety in rats (P<0.05). Immunohistochemical data showed that elemene decreased SNI-induced upregulation of NDRG2 within the SDH (P<0.05). Double immunofluorescent staining data further showed that elemene decreased SNI-induced upregulation of the number of GFAP immunoreactive (-ir), NDRG-ir, and GFAP/NDRG2 double-labelled cells within the SDH (P<0.05). Immunoblotting data showed that elemene decreased SNI-induced upregulation of GFAP and NDRG2 within the SDH (P<0.05).@*CONCLUSION@#Elemene possibly alleviated neuropathic pain by downregulating the expression of NDRG2 in spinal astrocytes in a rat model of SNI.
Subject(s)
Animals , Astrocytes , Disease Models, Animal , Emulsions , Hyperalgesia/drug therapy , Nerve Tissue Proteins , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley , Sesquiterpenes , Spinal Cord , Spinal Cord Dorsal HornABSTRACT
Ketamine (KET) is an N-methyl-D-aspartate (NMDA) antagonist with rapid and long-lasting antidepressant effects, but how the drug shows its sustained effects is still a matter of controversy. The objectives were to evaluate the mechanisms for KET rapid (30 min) and long-lasting (15 and 30 days after) antidepressant effects in mice. A single dose of KET (2, 5, or 10 mg/kg, po) was administered to male Swiss mice and the forced swim test (FST) was performed 30 min, 15, or 30 days later. Imipramine (IMI, 30 mg/kg, ip), a tricyclic antidepressant drug, was used as reference. The mice were euthanized, separated into two time-point groups (D1, first day after KET injection; D30, 30 days later), and brain sections were processed for glycogen synthase kinase-3 (GSK-3), histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) immunohistochemical assays. KET (5 and 10 mg/kg) presented rapid and long-lasting antidepressant-like effects. As expected, the immunoreactivities for brain GSK-3 and HDAC decreased compared to control groups in all areas (striatum, DG, CA1, CA3, and mainly pre-frontal cortex, PFC) after KET injection. Increases in BDNF immunostaining were demonstrated in the PFC, DG, CA1, and CA3 areas at D1 and D30 time-points. GFAP immunoreactivity was also increased in the PFC and striatum at both time-points. In conclusion, KET changed brain BDNF and GFAP expressions 30 days after a single administration. Although neuroplasticity could be involved in the observed effects of KET, more studies are needed to explain the mechanisms for the drug's sustained antidepressant-like effects.
Subject(s)
Animals , Male , Rabbits , Brain/drug effects , Brain/enzymology , Brain-Derived Neurotrophic Factor/metabolism , Ketamine/pharmacology , Antidepressive Agents/pharmacology , Astrocytes , Glycogen Synthase Kinase 3 , Disease Models, Animal , Glial Fibrillary Acidic Protein , Histone DeacetylasesABSTRACT
Objective@#Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.@*Methods@#Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).@*Results@#Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation @*Conclusion@#Antimony activated astrocytes by activating the NF-κB signaling pathway.
Subject(s)
Animals , Antimony/toxicity , Astrocytes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Glial Fibrillary Acidic Protein/metabolism , MAP Kinase Kinase Kinases , Male , Mice, Inbred ICR , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Signal Transduction/drug effectsABSTRACT
Astrocytes are a heterogenous group of macroglia present in all regions of the brain and play critical roles in many aspects of brain development, function and disease. Previous studies suggest that the B-cell lymphoma-2 associated X protein (BAX)-dependent apoptosis plays essential roles in regulating neuronal number and achieving optimal excitation/inhibition ratio. The aim of the present paper was to study whether BAX regulates astrocyte distribution in a region-specific manner. Immunofluorescence staining of SOX9 was used to analyze and compare astrocyte density in primary somatosensory cortex, motor cortex, retrosplenial cortex and hippocampus in heterozygous and homozygous BAX knockout mice at age of six weeks when cortical development has finished and glia development has reached a relatively steady state. The results showed that astrocyte density varied significantly among different cortical subdivisions and between cortex and hippocampus. In contrast to the significant increase in GABAergic interneurons, the overall and region-specific astrocyte density remained unchanged in the cortex when BAX was absent. Interestingly, a significant reduction of astrocyte density was observed in the hippocampus of BAX knockout mice. These data suggest that BAX differentially regulates neurons and astrocytes in cortex as well as astrocytes in different brain regions during development. This study provided important information about the regional heterogeneity of astrocyte distribution and the potential contribution of BAX gene during development.
Subject(s)
Animals , Astrocytes , Hippocampus , Interneurons , Mice , Neurons , bcl-2-Associated X Protein/geneticsABSTRACT
When ischemia or hemorrhagic stroke occurs, astrocytes are activated by a variety of endogenous regulatory factors to become reactive astrocytes. Subsequently, reactive astrocytes proliferate, differentiate, and migrate around the lesion to form glial scar with the participation of microglia, neuron-glial antigen 2(NG2) glial cells, and extracellular matrix. The role of glial scars at different stages of stroke injury is different. At the middle and late stages of the injury, the secreted chondroitin sulfate proteoglycan and chondroitin sulfate are the main blockers of axon regeneration and nerve function recovery. Targeted regulation of glial scars is an important pathway for neurological rehabilitation after stroke. Chinese medicine has been verified to be effective in stroke rehabilitation in clinical practice, possibly because it has the functions of promoting blood resupply, anti-inflammation, anti-oxidative stress, inhibiting cell proliferation and differentiation, and benign intervention in glial scars. This study reviewed the pathological process and signaling mechanisms of glial scarring after stroke, as well as the intervention of traditional Chinese medicine upon glial scar, aiming to provide theoretical reference and research evidence for developing Chinese medicine against stroke in view of targeting glial scarring.
Subject(s)
Astrocytes , Axons/pathology , Cicatrix/pathology , Gliosis/pathology , Humans , Medicine, Chinese Traditional , Nerve Regeneration , Stroke/drug therapyABSTRACT
NG2-glia are a major type of glial cells that are widely distributed in the central nervous system (CNS). Under physiological conditions, they mainly differentiate into oligodendrocytes and contribute to the myelination of axons, so they are generally called oligodendrocyte progenitor cells. Emerging evidence suggests that NG2-glia not only act as the precursors of oligodendrocytes but also possess many other biological properties and functions. For example, NG2-glia can form synapse with neurons and participate in energy metabolism and immune regulation. Under pathological conditions, NG2-glia can also differentiate into astrocytes, Schwann cells and even neurons, which are involved in CNS injury and repair. Therefore, a deeper understanding of the biological characteristics and functions of NG2-glia under physiological and pathological conditions will be helpful for the treatment of CNS injury and disease. This article reviews the recent advances in the biological characteristics and functions of NG2-glia.
Subject(s)
Astrocytes , Central Nervous System , Neuroglia , Neurons , OligodendrogliaABSTRACT
Introducción: Los gliomas son tumores malignos altamente celulares del sistema ner vioso central. Su grado histológico preoperatorio es de utilidad en el manejo quirúrgico, por lo que la resonancia magnética con secuencias avanzadas intenta brindar mayor información tumoral. Objetivo: Relacionar el coeficiente aparente de difusión (CAD) y celularidad de los gliomas de pacientes entre enero 2015 a diciembre 2017. Metodo logía: Retrospectivamente se obtuvieron de archivos clínicos la edad, sexo, tipo, grado histológico y sitio anatómico. Se calculó el CAD en 5mm 2 en los estudios de resonancia magnética preoperatorias y se utilizó las laminillas para conteo de celularidad en 5mm 2 digitalmente. Se utilizó análisis estadísticos descriptivos y coeficiente de correlación entre CDA con celularidad. Se utilizaron valores de p < 0.05 para significancia estadís tica. Resultados: 46 casos fueron incluidos, 56.5% fueron hombres. El rango de 4164 años fueron los más afectados. El glioblastoma fue el tipo histológico más frecuente (47.8%), así como los gliomas de alto grado (73.9%). El 95.7% fueron supratentoriales. La celularidad promedio fue de 3970 ± 2900 vs 2436 ± 948 núcleos/5mm 2 (p = 0.13), con valores promedio de CDA mínimo de 0.813 x 103 ± 0.229 mm 2 /s vs 1.052 x 103 ± 0.196 mm 2 /s (p = 0.002), para los gliomas de alto y bajo grado respectivamente. La co rrelación entre CDA y celularidad fue débil (R = 0.13, p = 0.37). Conclusión: Existe co rrelación débil inversamente proporcional entre el CDA y la celularidad con distinción de gliomas de bajo y alto grado con valores de CDA mínimos
Introduction: Gliomas are highly cellular malignant tumors of the central nervous sys tem. Its preoperative histological grade is useful in surgical management, so magnetic resonance imaging with advanced sequences tries to provide more tumor information. Objective: Correlate apparent diffusion coefficient (ADC) and cellularity of gliomas of patients between January 2015 to December 2017. Methodology: Data of age, sex, ty pe, histologic grade and anatomic site were retrospectively obtained from clinical archi ves. The preoperative magnetic resonance ADC was calculated in a 5 mm 2 region of interest and the microscope slides were used for the cellularity digitally count in 5 mm 2 . Descriptive statistical analysis and correlation coefficient between ADC and cellularity were used. Values of p <0.05 were used for statistical significance. Results: 46 cases were included, 56.5% were men. The 4164 years ranges were the most affected. Glio blastoma was the most frequent histological type (47.8%), as well as high grade glio mas (73.9%). 95.7% were supratentorial. The average cellularity was 3970 ± 2900 vs 2436 ± 948 nuclei/ 5mm 2 (p = 0.13), with average minimum ADC values of 0.813 x 103 ± 0.229 mm 2 /s vs 1052 x 103 ± 0.196 mm 2 /s (p = 0.002), for high and lowgrade glio mas, respectively. The correlation between ADC and cellularity was weak (R = 0.13, p = 0.37). Conclusions: There is a weak inversely proportional correlation between ADC and cellularity. With distinction of low and highgrade gliomas with minimum ADC values
Subject(s)
Humans , Male , Female , Middle Aged , Astrocytes/pathology , Glioma/epidemiology , Oligodendroglioma/epidemiology , Magnetic Resonance Imaging/methods , Glioblastoma/physiopathologyABSTRACT
Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, real-time reverse transcriptase–polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.
Subject(s)
Animals , Astrocytes , Calcineurin , Calcium , Cell Death , Diazepam , Epilepsy , Epilepsy, Temporal Lobe , Fluorescent Antibody Technique , Hippocampus , Humans , Immunohistochemistry , In Situ Hybridization , Male , Mice , Microglia , Neurons , Neuropil , Oxidative Stress , Pilocarpine , RNA, Messenger , Seizures , Status Epilepticus , Up-Regulation , ViolaABSTRACT
OBJECTIVE@#To explore the protective effect of SBi4211 (heptamidine), an inhibitor of S100B, against central nervous system injury induced by HIV-1 envelope protein gp120.@*METHODS@#In an @*RESULTS@#In the cell co-culture system, SBi4211 treatment significantly inhibited gp120-induced expression of S100B, RAGE and GFAP in U251 cells (@*CONCLUSIONS@#SBi4211 can protect neurons from gp120-induced neurotoxicity possibly by inhibiting the S100B/ RAGE-mediated signaling pathway.