Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Article in Chinese | WPRIM | ID: wpr-878976

ABSTRACT

Breast tumor has become one of the malignant tumors with the highest incidence, and is a serious threat to human health, especially to women. Chemotherapy is an important anti-breast tumor therapy, which can be used in almost every stage of breast tumor therapy alone or in the combination with surgery and radiation therapy. Alkaloids are a kind of ubiquitous natural products, and important active components of various medicinal plants. A large number of studies have shown that alkaloids could exert an anti-breast tumor effect by inhibiting proliferation, metastasis and angiogenesis, resisting mitosis, promoting apoptosis and autophagy, and triggering cell cycle arrest. The extensive anti-breast tumor effect makes alkaloids an important candidate drug source. This paper reviews the anti-breast tumor mechanism of natural products of alkaloids.


Subject(s)
Alkaloids/pharmacology , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Female , Humans
2.
Braz. j. med. biol. res ; 54(10): e10891, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285652

ABSTRACT

Juniperus communis (JCo) is a well-known traditional Chinese medicinal plant that has been used to treat wounds, fever, swelling, and rheumatism. However, the mechanism underlying the anticancer effect of JCo extract on colorectal cancer (CRC) has not yet been elucidated. This study investigated the anticancer effects of JCo extract in vitro and in vivo as well as the precise molecular mechanisms. Cell viability was evaluated using the MTT assay. Cell cycle distribution was examined by flow cytometry analysis, and cell apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein expression was analyzed using western blotting. The in vivo activity of the JCo extract was evaluated using a xenograft BALB/c mouse model. The tumors and organs were examined through hematoxylin-eosin (HE) staining and immunohistochemistry. The results showed that JCo extract exhibited higher cytotoxicity against CRC cells than against normal cells and showed synergistic effects when combined with 5-fluorouracil. JCo extract induced cell cycle arrest at the G0/G1 phase via regulation of p53/p21 and CDK4/cyclin D1 and induced cell apoptosis via the extrinsic (FasL/Fas/caspase-8) and intrinsic (Bax/Bcl-2/caspase-9) apoptotic pathways. In vivo studies revealed that JCo extract suppressed tumor growth through the inhibition of proliferation and induction of apoptosis. In addition, there was no obvious change in body weight or histological morphology of normal organs after treatment. JCo extract suppressed CRC progression by inducing cell cycle arrest and apoptosis in vitro and in vivo, suggesting the potential application of JCo extract in the treatment of CRC.


Subject(s)
Animals , Rabbits , Colorectal Neoplasms/drug therapy , Adenocarcinoma/drug therapy , Juniperus , Antineoplastic Agents, Phytogenic/pharmacology , Plant Extracts/pharmacology , Cell Cycle , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Cycle Checkpoints , Mice, Inbred BALB C
3.
Article in Chinese | WPRIM | ID: wpr-880803

ABSTRACT

OBJECTIVE@#To investigate the effect of palbociclib on cell cycle progression and proliferation of human renal tubular epithelial cells.@*METHODS@#Human renal tubular epithelial cell line HK-2 was treated with 1, 5, 10, and 20 μmol/L of palbociclib, and the changes in cell proliferation and viability were examined by cell counting and CCK8 assay. EDU staining was used to assess the proliferation of HK-2 cells following palbiciclib treatment at different concentrations for 5 days. The effect of palbociclib on cell cycle distribution of HK-2 cells was evaluated using flow cytometry. SA-β-Gal staining and C12FDG senescence staining were used to detect senescence phenotypes of HK-2 cells after palbociclib treatment at different concentrations for 5 days. The relative mRNA expression levels of P16, P21, and P53 and the genes associated with senescence-related secretion phenotypes were detected by RT-PCR, and the protein expressions of P16, P21 and P53 were detected by Western blotting.@*RESULTS@#Palbociclib inhibited HK-2 cell proliferation and induced cell cycle arrest in G1 phase. Compared with the control cells, HK-2 cells treated with high-dose (10 μmol/L) palbociclib exhibited significantly suppressed cell proliferation activity, and the inhibitory effect was the most obvious on day 5 (@*CONCLUSIONS@#Palbociclib induces HK-2 cell senescence by causing cell growth arrest and delaying cell cycle progression.


Subject(s)
Cell Cycle , Cell Cycle Checkpoints , Cellular Senescence , Epithelial Cells , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Tumor Suppressor Protein p53/genetics
4.
Article in Korean | WPRIM | ID: wpr-738591

ABSTRACT

PURPOSE: To determine the possible effects of chronic exposure of low dose benzalkonium chloride (BAK) on trabecular meshwork cells, and to characterize the pathways involved in the effects. METHODS: Trabecular meshwork cells were treated with 0.0005%, 0.00075%, 0.001%, and 0.0025% BAK for 10 minutes; then, the cells were transferred to a new medium for 24 hours. This process was repeated three times. Cell survival was assessed using the MTT assay to determine the non-apoptotic BAK concentration. Senescence-associated (SA)-β-gal staining was performed to compare quantitatively the cellular senescence of BAK-treated cells with the control group. Cells treated with BAK were analyzed by western blot to determine whether the expressions of cell cycle regulators were affected. RESULTS: Two concentrations (0.0005% and 0.00075%) showed persistent cell viability and were chosen for further experiments. After SA-β-gal staining, cells treated with 0.0005% and 0.00075% BAK showed 28% (± 2.08), 37% (± 2.08) increases in cellular senescence expression, respectively, when compared with control cells (p < 0.05). To identify the molecular pathways involved in cell cycle arrest via BAK, western blot analysis was performed on trabecular meshwork cells, resulting in decreased expressions of cyclin E/CDK2, and increased expressions of the upper stream control molecules, p53 and p21. CONCLUSIONS: Chronic exposure to low dose BAK accelerated cell senescence through cell cycle arrest. Because senescent cells of the trabecular meshwork can inhibit its outflow pathway function and ultimately worsen the glaucomatous process, long-term usage of topical glaucoma medications containing BAK should be conducted with caution.


Subject(s)
Aging , Benzalkonium Compounds , Blotting, Western , Cellular Senescence , Cell Cycle , Cell Cycle Checkpoints , Cell Survival , Cyclins , Glaucoma , Rivers , Trabecular Meshwork
5.
Article in English | WPRIM | ID: wpr-761921

ABSTRACT

BACKGROUND: Enhancement and maintenance of the stemness of mesenchymal stem cells (MSCs) is one of the most important factors contributing to the successful in vivo therapeutic application of these cells. In this regard, three-dimensional (3D) spheroid formation has been developed as reliable method for increasing the pluripotency of MSCs. Moreover, using a new protocol, we have previously shown that dental tissues of extracted wisdom teeth can be effectively cryopreserved for subsequent use as a source of autologous stem cells. The main purpose of this study is to analyze the stemness and in vitro osteogenic differentiation potential of 3D spheroid dental MSCs compared with conventional monolayer cultured MSCs. METHODS: In this study, MSC-characterized stem cells were isolated and cultured from long-term cryopreserved dental follicles (hDFSCs), and then 2D hDFSCs were cultured under 3D spheroid-forming conditions using a newly designed microchip dish. The spheroids (3D hDFSCs) thus produced were investigated and characterized with respect to stemness, MSC marker expression, apoptosis, cell cycle analysis, extracellular matrix (ECM) production, and osteogenic and adipogenic differentiation properties. RESULTS: In terms of MSC and senescence markers, spheroid cells showed no difference when compared with 2D hDFSCs; however, 3D hDFSCs were observed to have a higher proportion of cell cycle arrest and a larger number of apoptotic cells. Moreover, spheroids showed substantially increased levels of pluripotency marker (early transcription factors) and ECM protein expression. Compared with 2D hDFSCs, there was also a notable enhancement in the osteogenic induction potential of spheroids, although no differences were observed with respect to in vitro adipogenesis. CONCLUSION: To the best of our knowledge, this is the first study to demonstrate the application of a spheroid culture system for dental follicle-derived stem cells using a microchip dish. Although further studies are needed, including in vivo transplantation, the results obtained in this study indicate that spheroid hDFSCs derived from cryopreserved dental follicle tissues could be used as a valuable source of autologous stem cells for bone tissue regeneration.


Subject(s)
Adipogenesis , Aging , Apoptosis , Bone and Bones , Cell Cycle , Cell Cycle Checkpoints , Dental Sac , Extracellular Matrix , Humans , In Vitro Techniques , Mesenchymal Stem Cells , Methods , Molar, Third , Osteogenesis , Regeneration , Stem Cells
6.
Article in English | WPRIM | ID: wpr-764074

ABSTRACT

BACKGROUND AND OBJECTIVES: There have been contradictory reports on the pro-cancer or anti-cancer effects of mesenchymal stem cells. In this study, we investigated whether conditioned medium (CM) from hypoxic human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) (H-CM) showed enhanced anti-cancer effects compared with CM from normoxic hUC-MSCs (N-CM). METHODS AND RESULTS: Compared with N-CM, H-CM not only strongly reduced cell viability and increased apoptosis of human cervical cancer cells (HeLa cells), but also increased caspase-3/7 activity, decreased mitochondrial membrane potential (MMP), and induced cell cycle arrest. In contrast, cell viability, apoptosis, MMP, and cell cycle of human dermal fibroblast (hDFs) were not significantly changed by either CM whereas caspase-3/7 activity was decreased by H-CM. Protein antibody array showed that activin A, Beta IG-H3, TIMP-2, RET, and IGFBP-3 were upregulated in H-CM compared with N-CM. Intracellular proteins that were upregulated by H-CM in HeLa cells were represented by apoptosis and cell cycle arrest terms of biological processes of Gene Ontology (GO), and by cell cycle of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In hDFs, negative regulation of apoptosis in biological process of GO and PI3K-Akt signaling pathway of KEGG pathways were represented. CONCLUSIONS: H-CM showed enhanced anti-cancer effects on HeLa cells but did not influence cell viability or apoptosis of hDFs and these different effects were supported by profiling of secretory proteins in both kinds of CM and intracellular signaling of HeLa cells and hDFs.


Subject(s)
Activins , Hypoxia , Apoptosis , Biological Phenomena , Cell Cycle , Cell Cycle Checkpoints , Cell Survival , Culture Media, Conditioned , Fibroblasts , Gene Ontology , Genome , HeLa Cells , Humans , Insulin-Like Growth Factor Binding Protein 3 , Membrane Potential, Mitochondrial , Mesenchymal Stem Cells , Tissue Inhibitor of Metalloproteinase-2 , Uterine Cervical Neoplasms
7.
Article in English | WPRIM | ID: wpr-742449

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. METHODS: Mouse AE II cell line MLE-12 were exposed to 1–10 µg/mL BLM and 0.01–100 µM baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. RESULTS: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor α, and transforming growth factor β1. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. CONCLUSION: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.


Subject(s)
Animals , Apoptosis , Bisbenzimidazole , Bleomycin , Cell Cycle Checkpoints , Cell Cycle , Cell Line , Cell Survival , Cytokines , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Gene Expression , Genes, vif , Humans , Idiopathic Pulmonary Fibrosis , Interleukin-6 , Lung , Mice , Propidium , RNA, Messenger , Transforming Growth Factors , Tumor Necrosis Factor-alpha
8.
Article in English | WPRIM | ID: wpr-742359

ABSTRACT

PURPOSE: This study investigated the role of natriuretic peptide receptor 2 (NPR2) on cell proliferation and testosterone secretion in mouse Leydig cells. MATERIALS AND METHODS: Mouse testis of different postnatal stages was isolated to detect the expression C-type natriuretic peptide (CNP) and its receptor NPR2 by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Leydig cells isolated from mouse testis were cultured and treated with shNPR2 lentiviruses or CNP. And then the cyclic guanosine monophosphate production, testosterone secretion, cell proliferation, cell cycle and cell apoptosis in mouse Leydig cells were analyzed by ELISA, RT-qPCR, Cell Counting Kit-8, and flow cytometry. Moreover, the expression of NPR2, cell cycle, apoptosis proliferation and cell cycle related gene were detected by RT-qPCR and Western blot. RESULTS: Knockdown of NPR2 by RNAi resulted in S phase cell cycle arrest, cell apoptosis, and decreased testosterone secretion in mouse Leydig cells. CONCLUSIONS: Our study provides more evidences to better understand the function of CNP/NPR2 pathway in male reproduction, which may help us to treat male infertility.


Subject(s)
Animals , Apoptosis , Blotting, Western , Cell Count , Cell Cycle , Cell Cycle Checkpoints , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Germ Cells , Guanosine Monophosphate , Humans , Infertility, Male , Lentivirus , Leydig Cells , Male , Mice , Natriuretic Peptide, C-Type , Polymerase Chain Reaction , Receptors, Peptide , Reproduction , Reverse Transcription , RNA Interference , S Phase , Testicular Diseases , Testis , Testosterone
9.
Article in English | WPRIM | ID: wpr-766013

ABSTRACT

BACKGROUND: Development of chemotherapeutics for the treatment of advanced hepatocellular carcinoma (HCC) has been lagging. Screening of candidate therapeutic agents by using patient-derived preclinical models may facilitate drug discovery for HCC patients. METHODS: Four primary cultured HCC cells from surgically resected tumor tissues and six HCC cell lines were used for high-throughput screening of 252 drugs from the Prestwick Chemical Library. The efficacy and mechanisms of action of the candidate anti-cancer drug were analyzed via cell viability, cell cycle assays, and western blotting. RESULTS: Guanabenz acetate, which has been used as an antihypertensive drug, was screened as a candidate anti-cancer agent for HCC through a drug sensitivity assay by using the primary cultured HCC cells and HCC cell lines. Guanabenz acetate reduced HCC cell viability through apoptosis and autophagy. This occurred via inhibition of growth arrest and DNA damage-inducible protein 34, increased phosphorylation of eukaryotic initiation factor 2α, increased activating transcription factor 4, and cell cycle arrest. CONCLUSIONS: Guanabenz acetate induces endoplasmic reticulum stress–related cell death in HCC and may be repositioned as an anti-cancer therapeutic agent for HCC patients.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Autophagy , Blotting, Western , Carcinoma, Hepatocellular , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Cell Line , Cell Survival , DNA , Drug Discovery , Drug Repositioning , Endoplasmic Reticulum , Guanabenz , Humans , Mass Screening , Peptide Initiation Factors , Phosphorylation , Primary Cell Culture
10.
Journal of Breast Cancer ; : 172-184, 2019.
Article in English | WPRIM | ID: wpr-764271

ABSTRACT

PURPOSE: Tumor protein p53-regulated apoptosis-inducing protein 1 (TP53AIP1) functions in various cancers. We studied the effect and molecular mechanism of TP53AIP1 in breast cancer. METHODS: The degree of correlation between TP53AIP1 expression and overall survival in patients with breast cancer was obtained from the online The Cancer Genome Atlas database. Six of the TP53AIP1 levels in the tumor and adjacent non-tumor tissues randomly selected from 38 breast cancer patients were determined. Transgenic technology was used to enhance the expression of TP53AIP1 in breast cancer cell lines, MDA-MB-415 and MDA-MB-468, and to observe the effects of gene overexpression on the proliferation, cell cycle, and apoptosis of breast cancer cells. The molecular mechanism of association between cell cycle- and apoptosis-related factors and the phosphoinositide 3-kinases/protein kinase B (PI3K/Akt) pathway was also studied. RESULTS: The messenger RNA and protein expression levels of TP53AIP1 in cancer tissues were significantly lower than those in the control group. TP53AIP1 overexpression inhibits cell viability. The mechanism of TP53AIP1 inhibition of proliferation and growth of breast cancer cells includes cell cycle arrest, apoptosis promotion (p < 0.01), promotion of the expression of cleaved-caspase-3 (p < 0.01), cleaved-caspase-9 (p < 0.01), B cell lymphoma/leukemia-2 (Bcl-2)-associated X protein, and p53 (p < 0.01), and the inhibition of Bcl-2, Ki67, and PI3K/Akt pathways (p < 0.01). CONCLUSION: TP53AIP1 may be a novel tumor suppressor gene in breast cancer and can potentially be used as an effective target gene for the treatment of breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms , Breast , Cell Cycle Checkpoints , Cell Line , Cell Proliferation , Cell Survival , Genes, p53 , Genes, Tumor Suppressor , Genome , Humans , Phosphotransferases , RNA, Messenger
11.
Cancer Research and Treatment ; : 1653-1665, 2019.
Article in English | WPRIM | ID: wpr-763196

ABSTRACT

PURPOSE: This study was aimed to investigate the role of poly(A)-binding protein-interacting protein 1 (Paip1) in cervical carcinogenesis. MATERIALS AND METHODS: The expression of Paip1 in normal cervical epithelial tissues and cervical cancer (CC) tissues were detected by immunohistochemistry. In vivo and in vitro assays were performed to validate effect of Paip1 on CC progression. RESULTS: Paip1 was found to be up-regulated in CC, which was linked with shorter survival. Knockdown of Paip1 inhibited cell growth, induced apoptosis and cell cycle arrest in CC cells, whereas its overexpression reversed these effects. The in vivo tumor model confirmed the pro-tumor role of Paip1 in CC growth. CONCLUSION: Altogether, the investigation demonstrated the clinical significance of Paip1 expression, which prompted that the up-regulated of Paip1 can presumably be a potential prognostic and progression marker for CC.


Subject(s)
Apoptosis , Carcinogenesis , Cell Cycle , Cell Cycle Checkpoints , Immunohistochemistry , In Vitro Techniques , Prognosis , Uterine Cervical Neoplasms
12.
Cancer Research and Treatment ; : 1167-1179, 2019.
Article in English | WPRIM | ID: wpr-763163

ABSTRACT

PURPOSE: The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. MATERIALS AND METHODS: A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. RESULTS: Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. CONCLUSION: In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.


Subject(s)
Animals , Apoptosis , Ataxia Telangiectasia , Biliary Tract Neoplasms , Biliary Tract , Cell Cycle , Cell Cycle Checkpoints , Cell Line , Cisplatin , Comet Assay , DNA Damage , DNA Repair , DNA , Humans , Mice , ATP Binding Cassette Transporter, Subfamily B, Member 1
13.
Blood Research ; : 165-174, 2019.
Article in English | WPRIM | ID: wpr-763080

ABSTRACT

Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment planning. Consequently, studies related to the mechanisms underlying drug resistance, the molecular pathways involved in this phenomenon, and alternate therapies have attracted the attention of researchers. Among a variety of therapeutic modalities, mesenchymal stem cells (MSCs) are of special interest due to their potential clinical use. Therapies involving MSCs are showing increasing promise in cancer treatment and anticancer drug screening applications; however, results have been inconclusive, possibly due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on different types of cancer, such as hematologic malignancies, their mechanisms, sources of MSCs, and its advantages and disadvantages have been discussed. There are many proposed mechanisms describing the effects of MSCs in hematologic malignancies; however, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression of tumor cell proliferation in hematological malignancies, especially in acute myeloid leukemia.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Drug Evaluation, Preclinical , Drug Resistance , Hematologic Neoplasms , Leukemia , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Population Characteristics
14.
Article in English | WPRIM | ID: wpr-763016

ABSTRACT

Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence-associated β-galactosidase (SA-β-gal) activity. Tenovin-1-treated astrocytes showed increased SA-β-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-1β, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.


Subject(s)
Aging , Animals , Astrocytes , Blood-Brain Barrier , Brain , Cellular Senescence , Cell Count , Cell Cycle Checkpoints , Interleukin-6 , Language , Memory , Neurodegenerative Diseases , Neurons , Permeability , Phenotype , Rats , Wound Healing
15.
Yonsei Medical Journal ; : 509-516, 2019.
Article in English | WPRIM | ID: wpr-762085

ABSTRACT

PURPOSE: This study was conducted to verify the induction and mechanism of selective apoptosis in G361 melanoma cells using anti-HER2 antibody-conjugated gold nanoparticles (GNP-HER2). MATERIALS AND METHODS: Following GNP-HER2 treatment of G361 cells, cell cycle arrest and apoptosis were measured by WST-1 assay, Hemacolor staining, Hoechst staining, immunofluorescence staining, fluorescence-activated cell sorting analysis, and Western blotting.


Subject(s)
Actins , Apoptosis Inducing Factor , Apoptosis , Blotting, Western , Caspase 3 , Caspases , Cell Adhesion , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Cyclin A , Cyclin D1 , Cyclin E , Cyclins , Cytochromes c , Cytoplasm , DNA Fragmentation , Down-Regulation , Flow Cytometry , Fluorescent Antibody Technique , Focal Adhesions , Melanoma , Mitochondria , Nanoparticles , Phosphotransferases , ErbB Receptors , Up-Regulation
16.
Article in Chinese | WPRIM | ID: wpr-774000

ABSTRACT

Objective To explore the effects of diallyl disulfide(DADS)-induced G2/M phase arrest on proliferation and apoptosis of ovarian cancer cells and its possible molecular mechanism.Methods DADS was used to incubate SK-OV-3 and OVCAR-3 cells,respectively,in different concentrations. Cell proliferation was measured by MTT assay and cell apoptosis rate was detected by flow cytometry assay. Xenograft model assay were performed to analyze the antitumor effect in vivo. Cell cycle phase distribution was detected by flow cytometry. Expressions of cell cycle G2/M phase as well as proliferation- and apoptosis-related proteins were measured by Western blotting.Results MTT assay showed that,after treatment of SK-OV-3(F=247.86,P=0.000)and OVCAR-3 cells(F=302.54,P=0.000)with different concentrations of DADS,the cell proliferation inhibition rate was significantly elevated with the increase of DADS concentrations in a concentration-dependent manner. The inhibition rate of SK-OV-3(F=335.12,P=0.000)and OVCAR-3 cells(F=347.43,P=0.000)at 24 h was significantly higher than that at 12 h and 48 h,showing a significant time-dependence manner. Flow cytometry showed that,after SK-OV-3 and OVCAR-3 cells were treated with different concentrations of DADS,the apoptosis rates increased significantly with the increase of DADS concentration in a concentration-dependent manner(P<0.05). The apoptotic rates of SK-OV-3 and OVCAR-3 cells treated with DADS at 24 h was significantly higher than that at 12 h and 48 h in a significant time-dependence manner(P<0.05). Compared with the blank treatment group,intraperitoneal injection of DADS solution significantly inhibited the xenograft volume of ovarian cancer cells in nude mice(F=548.23,P=0.000;F=311.84,P=0.000). After 30 mg/L of DADS was applied to SK-OV-3 and OVCAR-3 cells for 24 h,the percentage of cells in G2 phase of SK-OV-3 and OVCAR-3 cells increased significantly(F=375.11,P=0.000;F=256.48,P=0.000),compared with the blank cells. After 30 mg/L DADS was applied to SK-OV-3 and OVCAR-3 cells for 24 h,the expressions of p-Chk1(ser345)(F=108.89,P=0.013;F=97.58,P=0.018),p-CDC25C(ser216)(F=87.25,P=0.025;F=114.25,P=0.009),p-P53(ser15)(F=112.41,P=0.011;F=255.87,P=0.000),P21WAF1(F=246.38,P=0.001;F=141.36,P=0.005)and p-CDK1(Thr14/Tyr15)protein(F=298.12,P=0.000;F=233.15,P=0.000)were significantly increased,whereas the expressions of CDK1(F=308.24,P=0.000;F=257.55,P=0.000)and CyclinB1 protein(F=223.15,P=0.001;F=241.28,P=0.000)were significantly reduced.The expressions of proliferation and apoptosis-related proteins PCNA(F=77.36,P=0.031;F=157.28,P=0.001),Ki-67(F=205.64,P=0.007;F=315.22,P=0.000)and Survivin(F=122.13,P=0.013;F=188.24,P=0.000)were significantly decreased and Cleaved-caspase3 protein was significantly increased(F=86.46,P=0.023;F=99.11,P=0.009).Conclusion DADS can inhibit the proliferation of ovarian cancer cells and induce their apoptosis,which may be related to the activation of Chk1-CDC25C and P53-P21WAF1 signaling pathways in G2/M checkpoint,decreased kinase activity of CDK1,down-regulated expressions of CDK1 and CyclinB1 proteins,and ultimately cell cycle arrest at G2/M phase.


Subject(s)
Allyl Compounds , Animals , Apoptosis , Carcinoma, Ovarian Epithelial , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Disulfides , Female , Humans , Mice , Mice, Nude
17.
Article in Chinese | WPRIM | ID: wpr-773705

ABSTRACT

Tumors are major chronic diseases and seriously threaten human health all over the world. How to effectively control and cure tumors is one of the most pivotal problems in the medical field. At present,surgery,radiotherapy and chemotherapy are still the main treatment methods. However,the side effects of radiotherapy and chemotherapy cannot be underestimated. Therefore,it is of great practical significance to find new anti-cancer drugs with low toxicity,high efficiency and targeting to cancer cells. With the increasing incidence of tumor,the anti-tumor effect of traditional Chinese medicine has increasingly become a research hotspot. Triptolide,which is a natural diterpenoid active ingredient derived from of Tripterygium wilfordii,as one of the highly active components,has anti-inflammatory,immunosuppressive,anti-tumor and other multiple effects. A large number of studies have confirmed that it has good anti-tumor activity against various tumors in vivo and in vitro. It can play an anti-tumor role by inhibiting the proliferation of cancer cells,inducing apoptosis of cancer cells,inducing autophagy of cancer cells,blocking the cell cycle,inhibiting the migration,invasion and metastasis of cancer cells,reversing multidrug resistance,mediating tumor immunity and inhibiting angiogenesis. On the basis of literatures,this paper reviews the anti-tumor effect and mechanism of triptolide,and analyzes the current situation of triptolide combined with other chemotherapy drugs,in order to promote deep research and better clinical application about triptolide.


Subject(s)
Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Autophagy , Cell Cycle Checkpoints , Diterpenes , Pharmacology , Epoxy Compounds , Pharmacology , Humans , Neoplasms , Drug Therapy , Phenanthrenes , Pharmacology , Tripterygium , Chemistry
18.
São Paulo; s.n; s.n; 2019. 90 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-995153

ABSTRACT

O melanoma é responsável por menos de 5% dos cânceres de pele, porém, 95% das mortes ocorrem devido a ocorrência de metástases. O melanoma metastático é refratário às terapias convencionais e rapidamente adquire resistência às terapias como as oncogene-dirigidas, como o inibidor de BRAF, da via de MAPK. Estudos prévios de screening in silico do nosso grupo, onde se utilizou as bases de dados TCGA e GEO, identificaram o gene adenosina quinase (ADK) como sendo diferencialmente expresso entre o melanoma invasivo e os nevus. A 5-iodotubercidina (5-ITu) é um potente inibidor farmacológico da ADK que dentre os diversos efeitos relatados na literatura destaca-se pelo potencial genotóxico. Os danos no DNA são os principais ativadores de checkpoint do ciclo celular, que levam a parada do ciclo celular transitória ou permanente, além de induzir morte celular, levando a hipótese de que ADK possa ser potencial agente anti-melanoma. Este trabalho objetivou avaliar a expressão do gene ADK em melanomas humanos e quimiorresistentes ao inibidor de BRAF (iBRAF), avaliou os impactos de 5-ITu sobre a proliferação, progressão do ciclo celular e morte celular e por fim avaliamos sua capacidade de aumentar a sensibilidade das células. Foi realizado PCR em tempo real para avaliar os níveis de expressão de mRNA de ADK em linhagens de melanoma e na cultura primária de melanócitos; a fim de avaliar a citotoxicidade de 5-ITu foram realizados os ensaios de exclusão por azul de tripan e de apoptose - Anexina V e PI e em modelo de esferoide, usando live/dead; também foi avaliada a influência de 5-ITu sobre a capacidade clonogênica e seus efeitos sobre a proliferação celular, a partir dos ensaios de ciclo celular e avaliação de marcadores de proliferação por imunofluorescência; as linhagens foram submetidas a diferentes regimes de tratamento com 5-ITu e o iBRAF, a fim de avaliar a curva de crescimento e a sensibilidade ao iBRAF por MTT níveis de expressão de mRNA de ADK maiores nas linhagens tumorais em relação aos melanócitos. 5-ITu mostrou-se capaz de inibir a proliferação (IC50) das linhagens de melanoma em concentrações de 1,9 a 3,5 µM. 5-ITu não foi capaz de induzir inviabilidade celular, apesar de reduzir a quantidade de células viáveis em todas as condições de tratamento, também não foi capaz de induzir aumento significativo de células apoptóticas, nem mesmo necróticas. No entanto, o tratamento com 5-ITu reduziu a capacidade clonogênica de linhagens de melanoma e promoveu parada de ciclo celular nas fases G1 e G2/M, levou ao aumento da população subG1. O tratamento com 5-ITu promoveu a redução da expressão de marcadores de proliferação, como ki67, e a combinação de tratamentos 5-ITu e iBraf foi capaz de aumentar o tempo de dobramento das linhagens de melanoma, embora tenha se mostrado incapaz de sensibilizar as células de melanoma ao tratamento com iBRAF. Desse modo, pode-se concluir que 5-ITu induz o efeito citostático e se mostra um potente agente antiproliferativo para melanoma parental e resistente


Melanoma accounts for less than 5% of skin cancers, but 95% of deaths occur due to metastases. Metastatic melanoma is refractory to conventional therapies and rapidly acquires resistance to therapies such as oncogene-directed, such as the BRAF inhibitor, of the MAPK pathway. Previous studies of screening in silico of our group, using the databases TCGA and GEO, identified the adenosine kinase gene (ADK) as differentially expressed between invasive melanoma and nevus. 5-iodotubercidin (5-ITu) is a potent pharmacological inhibitor of ADK that among the several effects reported in the literature stands out for the genotoxic potential. DNA damage is the main activator of the cell cycle checkpoint, which leads to transient or permanent cell cycle arrest, in addition to inducing cell death, leading to the hypothesis that ADK may be a potential anti-melanoma agent. This work aimed to evaluate the expression of the ADK gene in human melanomas and chemoresistants to the BRAF inhibitor (iBRAF), evaluated the impacts of 5-ITu on proliferation, cell cycle progression and cell death and finally we evaluated its ability to increase the sensitivity of cells. Real-time PCR was performed to assess the levels of ADK mRNA expression in melanoma lines and primary melanocyte culture; in order to evaluate the cytotoxicity of 5-ITu, the trypan blue and apoptosis - Annexin V and PI exclusion and blue spheroid models were performed using live / dead; the influence of 5-ITu on the clonogenic capacity and its effects on cell proliferation, from the cell cycle assays and the evaluation of proliferation markers by immunofluorescence; the cell lines were submitted to different treatment regimens with 5-ITu and iBRAF in order to evaluate the growth curve and the sensitivity to iBRAF by MTT levels of mRNA expression of ADK higher in the tumor lines in relation to the melanocytes. 5-ITu was able to inhibit the proliferation (IC 50) of melanoma lines at concentrations of 1.9 to 3.5 181;M. 5-ITu was not able to induce cell non-viability, although it reduced the amount of viable cells in all treatment conditions, nor was it able to induce a significant increase in apoptotic or even necrotic cells. However, treatment with 5-ITu reduced the clonogenic capacity of melanoma cells and promoted cell cycle arrest in the G1 and G2 / M phases, leading to an increase in the subG1 population. Treatment with 5-ITu promotes the reduction of expression of proliferation markers, such as ki67, and the combination of 5-ITu and iBRAF treatments was able to increase the doubling time of melanoma cells, although it has been shown to be unable to sensitize melanoma cells to treatment with iBRAF. Thus, it can be concluded that 5-ITu induces the cytostatic effect and shows a potent antiproliferative agent for parental and resistant melanoma


Subject(s)
Adenosine Kinase/analysis , Melanoma , DNA Damage , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Disease Resistance , Cell Cycle Checkpoints , Neoplasms/classification
19.
Article in English | WPRIM | ID: wpr-785918

ABSTRACT

BACKGROUND: BRCA1 mutated breast cancer cells exhibit the elevated cell proliferation and the higher metastatic potential. G protein-coupled receptor 30 (GPR30) has been shown to regulate growth of hormonally responsive cancers, such as ovarian and breast cancers, and high expression of GPR30 is found in estrogen receptor (ER)-negative breast cancer cells. ER-negative breast cancer patients often have a mutation in the tumor suppressor gene, BRCA1. This study explored antiproliferative effects of genistein, a chemopreventive isoflavone present in legumes, and underlying molecular mechanisms in triple negative breast cancer cells with or without functionally active BRCA1.METHODS: Expression of BRCA1, GPR30 and Nrf2 was measured by Western blot analysis. Reactive oxygen species (ROS) accumulation was monitored by using the fluorescence-generating probe, 2’,7’-dichlorofluorescein diacetate. The effects of genistein on breast cancer cell viability and proliferation were assessed by the MTT, migration and clonogenic assays.RESULTS: The expression of GPR30 was dramatically elevated at both transcriptional and translational levels in BRCA1 mutated breast cancer cells compared to cells with wild-type BRCA1. Notably, there was diminished Akt phosporylation in GPR30 silenced cells. Treatment of BRCA1 silenced breast cancer cells with genistein resulted in the down-regulation of GPR30 expression and the inhibition of Akt phosphorylation as well as the reduced cell viability, migration and colony formation. Genistein caused cell cycle arrest at the G₂/M phase in BRCA1-mutant cells through down-regulation of cyclin B1 expression. Furthermore, BRCA1-mutant breast cancer cells exhibited higher levels of intracellular ROS than those in the wild-type cells. Genistein treatment lowered the ROS levels through up-regulation of Nrf2 expression.CONCLUSIONS: Lack of functional BRCA1 activates GPR30 signaling, thereby stimulating Akt phosphorylation and cell proliferation. Genistein induces G2/M phase arrest by down-regulating cyclin B1 expression, which is attributable to its suppression of GPR30 activation and Akt phosphorylation in BRCA1 impaired breast cancer cells.


Subject(s)
Blotting, Western , Breast Neoplasms , Breast , Cell Cycle Checkpoints , Cell Proliferation , Cell Survival , Cyclin B1 , Down-Regulation , Estrogens , Fabaceae , Genes, Tumor Suppressor , Genistein , Humans , Phosphorylation , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Up-Regulation
20.
Article in English | WPRIM | ID: wpr-759978

ABSTRACT

OBJECTIVE: Astrocyte dysfunctions are related to several central nervous system (CNS) pathologies. Transcriptomic profiling of human mRNAs to investigate astrocyte functions may provide the basic molecular-biological data pertaining to the cellular activities of astrocytes. METHODS: Human Primary astrocytes (HPAs) and human neural stem cell line (HB1.F3) were used for differential digital gene analysis. In this study, a massively parallel sequencing platform, next-generation sequencing (NGS), was used to obtain the digital gene expression (DGE) data from HPAs. A comparative analysis of the DGE from HPA and HB1.F3 cells was performed. Sequencing was performed using NGS platform, and subsequently, bioinformatic analyses were implemented to reveal the identity of the pathways, relatively up- or down-regulated in HPA cells. RESULTS: The top, novel canonical pathways up-regulated in HPA cells than in the HB1.F3 cells were “Cyclins and cell cycle regulation,” “Integrin signaling,” “Regulation of eIF4 and p70S6K signaling,” “Wnt/β-catenin signaling,” “mTOR signaling,” “Aryl hydrocarbon receptor signaling,” “Hippo signaling,” “RhoA signaling,” “Signaling by Rho family GTPases,” and “Glioma signaling” pathways. The down-regulated pathways were “Cell cycle: G1/S checkpoint regulation,” “eIF2 signaling,” “Cell cycle: G2/M DNA damage checkpoint regulation,” “Telomerase signaling,” “RhoGDI signaling,” “NRF2-mediated oxidative stress response,” “ERK/MAPK signaling,” “ATM signaling,” “Pancreatic adenocarcinoma signaling,” “VEGF signaling,” and “Role of CHK proteins in cell cycle checkpoint control” pathways. CONCLUSION: This study would be a good reference to understand astrocyte functions at the molecular level, and to develop a diagnostic test, based on the DGE pattern of astrocytes, as a powerful, new clinical tool in many CNS diseases.


Subject(s)
Adenocarcinoma , Astrocytes , Cell Cycle , Cell Cycle Checkpoints , Central Nervous System , Central Nervous System Diseases , Computational Biology , Diagnostic Tests, Routine , DNA Damage , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Neural Stem Cells , Oxidative Stress , Pathology , Ribosomal Protein S6 Kinases, 70-kDa , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL