Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.093
Filter
1.
Braz. j. biol ; 83: e248746, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339351

ABSTRACT

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.


Resumo O câncer colorretal (CCR) é um dos cânceres mais comuns, levando a comorbidades e mortalidade em todo o mundo. O racional do presente estudo foi avaliar a combinação de galato de epigalocatequina e quercetina como um agente antitumoral potente como agente de comentário para protocolo terapêutico. O presente estudo investigou o efeito de galato de epigalocatequina (EGCG) (150 mg) e quercetina (200 mg) em diferentes proporções na proliferação e indução de apoptose em células de câncer de cólon humano (HCT-116). O crescimento celular, colonogênico, anexina V, além do ciclo celular foram detectados em resposta a fitomoléculas. Os dados obtidos mostraram que a formação de colônias foi inibida significativamente no CRC a partir da concentração mais baixa testada de 10 µg/mL, resultando em nenhuma colônia conforme visualizado por um microscópio de contraste de fase. Os dados mostraram uma elevação significativa na anexina V a 100 µg/mL de EGCG (25,85%) e 150 µg/mL de quercetina (48,35%). Além disso, a análise do ciclo celular mostrou que essa combinação causou parada do ciclo celular na fase G1 na concentração de 100 µg/mL (72,7%) e 150 µg/mL (75,25%). O efeito combinado da epigalocatequina galato e quercetina exerce atividade antiproliferativa contra o CCR, é promissor como agente quimioterápico alternativo convencional.


Subject(s)
Humans , Colorectal Neoplasms/drug therapy , Catechin/analogs & derivatives , Catechin/pharmacology , Quercetin/pharmacology , Cell Cycle , Annexin A5 , Cell Line, Tumor , Cell Proliferation
2.
São Paulo; s.n; s.n; 2023. 81 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1437408

ABSTRACT

Com base nas perturbações fosfoproteômicas de moléculas associadas ao ciclo celular em células infectadas pelo coronavírus causador da síndrome respiratória aguda grave (SARSCoV)-2, a hipótese de inibidores do ciclo celular como uma terapia potencial para a doença de coronavírus 2019 (COVID-19) foi proposta. No entanto, o cenário das alterações do ciclo celular em COVID-19 permanece inexplorado. Aqui, realizamos uma análise integrativa de sistemas imunológicos de proteoma publicamente disponível (espectrometria de massa) e dados de transcriptoma (sequenciamento de RNA em massa e de célula única [scRNAseq]), com o objetivo de caracterizar mudanças globais na assinatura do ciclo celular de pacientes com COVID-19. Além de módulos de co-expressão de genes significativos enriquecidos associados ao ciclo celular, encontramos uma rede interconectada de proteínas diferencialmente expressas associadas ao ciclo celular (DEPs) e genes (DEGs) integrando dados moleculares de 1.480 indivíduos (974 pacientes infectados por SARS-CoV-2 e 506 controles [controles saudáveis ou indivíduos com outras doenças respiratórias]). Entre esses DEPs e DEGs estão várias ciclinas (CCNs), ciclo de divisão celular (CDCs), quinases dependentes de ciclinas (CDKs) e proteínas de manutenção de minicromossomos (MCMs). Embora os pacientes com COVID-19 compartilhem parcialmente o padrão de expressão de algumas moléculas associadas ao ciclo celular com outras doenças respiratórias, eles exibiram uma expressão significativamente maior de moléculas associadas ao ciclo celular relacionadas à gravidade da doença. Notavelmente, a assinatura do ciclo celular predominou nos leucócitos do sangue dos pacientes, mas não nas vias aéreas superiores. Os dados de scRNAseq de 229 indivíduos (159 pacientes com COVID- 19 e 70 controles) revelaram que as alterações das assinaturas do ciclo celular predominam nas células B, T e NK. Esses resultados fornecem uma compreensão global única das alterações nas moléculas associadas ao ciclo celular em pacientes com COVID-19, sugerindo novas vias putativas para intervenção terapêutica


Based on phosphoproteomics perturbations of cell cycle-associated molecules in severe acute respiratory syndrome coronavirus (SARS-CoV)-2-infected cells, the hypothesis of cell cycle inhibitors as a potential therapy for Coronavirus disease 2019 (COVID-19) has been proposed. However, the landscape of cell cycle alterations in COVID-19 remains mostly unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome (mass spectrometry) and transcriptome data (bulk and single-cell RNA sequencing [scRNAseq]), aiming to characterize global changes in the cell cycle signature of COVID-19 patients. Beyond significant enriched cell cycle-associated gene co-expression modules, we found an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating molecular data of 1,480 individuals (974 SARS-CoV- 2 infected patients and 506 controls [either healthy controls or individuals with other respiratory illness]). Among these DEPs and DEGs are several cyclins (CCNs), cell division cycle (CDCs), cyclin-dependent kinases (CDKs), and mini-chromosome maintenance proteins (MCMs). Although COVID-19 patients partially shared the expression pattern of some cell cycleassociated molecules with other respiratory illnesses, they exhibited a significantly higher expression of cell cycle-associated molecules associated with disease severity. Notably, the cell cycle signature predominated in the patients blood leukocytes but not in the upper airways. The scRNAseq data from 229 individuals (159 COVID-19 patients and 70 controls) revealed that the alterations of cell cycle signatures predominate in B, T, and NK cells. These results provide a unique global comprehension of the alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention


Subject(s)
Humans , Male , Female , Patients/classification , Cell Cycle/immunology , COVID-19/pathology , Respiratory Tract Diseases/pathology , Mass Spectrometry/methods , Killer Cells, Natural/classification , Chromosomes/metabolism , Sequence Analysis, RNA/instrumentation , Coronavirus/pathogenicity , Proteome/analysis , Transcriptome/immunology
3.
Article in Chinese | WPRIM | ID: wpr-986960

ABSTRACT

OBJECTIVE@#To analyze the expression of hydroxysteroid dehydrogenase like 2 (HSDL2) in rectal cancer tissues and the effect of changes in HSDL2 expression level on proliferation of rectal cancer cells.@*METHODS@#Clinical data and tissue samples of 90 patients with rectal cancer admitted to our hospital from January 2020 to June 2022 were collected from the prospective clinical database and biological specimen database. The expression level of HSDL2 in rectal cancer and adjacent tissues was detected by immunohistochemistry, and based on the median level of HSDL2 expression, the patients were divided into high expression group (n=45) and low expression group (n=45) for analysis the correlation between HSDL2 expression level and the clinicopathological parameters. GO and KEGG enrichment analyses were performed to explore the role of HSDL2 in rectal cancer progression. The effects of changes in HSDL2 expression levels on rectal cancer cell proliferation, cell cycle and protein expressions were investigated in SW480 cells with lentivirus-mediated HSDL2 silencing or HSDL2 overexpression using CCK-8 assay, flow cytometry and Western blotting.@*RESULTS@#The expressions of HSDL2 and Ki67 were significantly higher in rectal cancer tissues than in the adjacent tissues (P < 0.05). Spearman correlation analysis showed that the expression of HSDL2 protein was positively correlated with Ki67, CEA and CA19-9 expressions (P < 0.01). The rectal cancer patients with high HSDL2 expressions had significantly higher likelihood of having CEA ≥5 μg/L, CA19-9 ≥37 kU/L, T3-4 stage, and N2-3 stage than those with a low HSDL2 expression (P < 0.05). GO and KEGG analysis showed that HSDL2 was mainly enriched in DNA replication and cell cycle. In SW480 cells, HSDL2 overexpression significantly promoted cell proliferation, increased cell percentage in S phase, and enhanced the expression levels of CDK6 and cyclinD1 (P < 0.05), and HSDL2 silencing produced the opposite effects (P < 0.05).@*CONCLUSION@#The high expression of HSDL2 in rectal cancer participates in malignant progression of the tumor by promoting the proliferation and cell cycle progress of the cancer cells.


Subject(s)
Humans , CA-19-9 Antigen , Ki-67 Antigen/metabolism , Prospective Studies , Cell Line, Tumor , Cell Proliferation/genetics , Rectal Neoplasms/genetics , Cell Cycle , Gene Expression Regulation, Neoplastic , Hydroxysteroid Dehydrogenases/metabolism
4.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Article in Chinese | WPRIM | ID: wpr-981152

ABSTRACT

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2
5.
Article in Chinese | WPRIM | ID: wpr-971119

ABSTRACT

OBJECTIVE@#To screen the prognostic biomarkers of metabolic genes in patients with multiple myeloma (MM), and construct a prognostic model of metabolic genes.@*METHODS@#The histological database related to MM patients was searched. Data from MM patients and healthy controls with complete clinical information were selected for analysis.The second generation sequencing data and clinical information of bone marrow tissue of MM patients and healthy controls were collected from human protein atlas (HPA) and multiple myeloma research foundation (MMRF) databases. The gene set of metabolism-related pathways was extracted from Molecular Signatures Database (MSigDB) by Perl language. The biomarkers related to MM metabolism were screened by difference analysis, univariate Cox risk regression analysis and LASSO regression analysis, and the risk prognostic model and Nomogram were constructed. Risk curve and survival curve were used to verify the grouping effect of the model. Gene set enrichment analysis (GSEA) was used to study the difference of biological pathway enrichment between high risk group and low risk group. Multivariate Cox risk regression analysis was used to verify the independent prognostic ability of risk score.@*RESULTS@#A total of 8 mRNAs which were significantly related to the survival and prognosis of MM patients were obtained (P<0.01). As molecular markers, MM patients could be divided into high-risk group and low-risk group. Survival curve and risk curve showed that the overall survival time of patients in the low-risk group was significantly better than that in the high risk group (P<0.001). GSEA results showed that signal pathways related to basic metabolism, cell differentiation and cell cycle were significantly enriched in the high-risk group, while ribosome and N polysaccharide biosynthesis signaling pathway were more enriched in the low-risk group. Multivariate Cox regression analysis showed that the risk score composed of the eight metabolism-related genes could be used as an independent risk factor for the prognosis of MM patients, and receiver operating characteristic curve (ROC) showed that the molecular signatures of metabolism-related genes had the best predictive effect.@*CONCLUSION@#Metabolism-related pathways play an important role in the pathogenesis and prognosis of patients with MM. The clinical significance of the risk assessment model for patients with MM constructed based on eight metabolism-related core genes needs to be confirmed by further clinical studies.


Subject(s)
Humans , Cell Cycle , Multiple Myeloma/genetics , Prognosis , Risk Factors
6.
Article in Chinese | WPRIM | ID: wpr-971105

ABSTRACT

OBJECTIVE@#To investigate the effects of miR-144-3p on cell proliferation, cell cycle and apoptosis of blast phase chronic myelogenous leukemia (CML) K562 cells.@*METHODS@#K562 cells were cultured in vitro and mimics negative control, hsa-miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor were respectively transfected into K562 cells with transfection reagents. The cells were divided into five groups including blank control, mimics negative control, miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor. After transfection, the cell proliferation activity was detected by CCK-8 assay. The cell cycle distribution and apoptosis were detected by flow cytometry.@*RESULTS@#Compared with the blank control and mimics negative control groups, the proliferation rate of miR-144-3p mimics group was significantly decreased (P<0.05), the proportion of S phase cells was markedly increased (P<0.05), while the proportion of G1 phase cells was obviously decreased (P<0.05), and the apoptosis rate was significantly increased (P<0.05). Compared with the blank control and inhibitor negative control groups, the proliferation rate of miR-144-3p inhibitor group was obviously increased (P<0.05), the proportion of S phase cells was markedly decreased (P<0.05), while the proportion of G1 phase cells was obviously increased (P<0.05), and the apoptosis rate was significantly decreased (P<0.05).@*CONCLUSION@#miR-144-3p can inhibit the proliferation and promote apoptosis of K562 cells, affect the cell cycle, and block K562 cells in S phase, which indicates that miR-144-3p is involved in the cell cycle activity of CML during blastic phase.


Subject(s)
Humans , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , K562 Cells , MicroRNAs/metabolism
7.
Article in Chinese | WPRIM | ID: wpr-970461

ABSTRACT

Extracellular signal-regulated kinase 1/2 (ERK1/2) is a serine/threoninekinase involved in the signal transduction cascade of Ras-Raf-mitogen-activated protein kinase (MEK)-ERK.It participates in the cell growth,proliferation and even invasion by regulating gene transcription and expression.The occurrence of a variety of diseases such as lung cancer,liver cancer,ovarian cancer,cervical cancer,endometriosis,and preeclampsia,as well the metastasis and disease progression,is closely associated with the regulation of cell invasion by ERK1/2 signaling pathway.Therefore,exploring the regulation of ERK1/2 signaling on cell invasion and its role in pathogenesis of diseases may help to develop more effective treatment schemes.This article introduces recent progress in the regulation of ERK1/2 signaling on cell invasion and the role of such regulation in diseases,with a view to give new insights into the clinical treatment of ERK 1/2-related diseases.


Subject(s)
Female , Pregnancy , Humans , Mitogen-Activated Protein Kinase 3 , Signal Transduction , Mitogen-Activated Protein Kinases , Cell Cycle , Cell Proliferation
8.
Chinese Journal of Oncology ; (12): 238-252, 2023.
Article in Chinese | WPRIM | ID: wpr-969830

ABSTRACT

Objective: To explore whether hsa_circ_0000670 promotes the progression of gastric cancer by regulating the miR-515-5p/SIX1 molecular axis. Methods: The gastric cancer and adjacent normal tissues of 35 gastric cancer patients admitted to Rugao Hospital Affiliated to Nantong University from 2014 to 2015 were collected. The expression levels of circ_0000670, miR-515-5p and Sine oculis homeobox 1 (SIX1) in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The correlations between circ_0000670 and miR-515-5p, miR-515-5p and SIX1, circ_0000670 and SIX1 were analyzed by the Pearson method. Patients were divided into low circ_0000670 expression group (17 cases) and high circ_0000670 expression group (18 cases) based on the median of circ_0000670 expression level, and Kaplan-Meier was used to analyze the 5-year survival of patients. Cell proliferation was assessed via clone formation assay. Cell cycle and apoptosis were detected by flow cytometry. Wound healing and Transwell assays were used to detect cell migration and invasion ability. The targeting relationship between miR-515-5p and circ_0000670 or SIX1 was confirmed by the dual luciferase reporter assay. Nude mice were injected into HGC-27 cells transfected with sh-NC or sh-circ_0000670, and the volume and weight of the transplanted tumor were measured, also, the levels of circ_0000670, miR-515-5p and SIX1 in the transplanted tumor tissue were detected. Results: The expression levels of circ_0000670 and SIX1 in gastric cancer tissues and cell lines were significantly increased (P<0.05), while the expression levels of miR-515-5p were significantly decreased (P<0.05). The survival rate of patients in the low circ_0000670 expression group (82.4%) was significantly higher than that in the high circ_0000670 expression group (28.7%, P=0.034). Circ_0000670 was negatively correlated with miR-515-5p (r=-0.846, P<0.001), and miR-515-5p was negatively correlated with SIX1 (r=-0.615, P<0.001), but circ_0000670 was positively correlated with SIX1 (r=0.814, P<0.001). Transfection of si-circ_0000670 or miR-515-5p mimic could significantly reduce the number of clone-forming cells, migration distance, migration and invasion cells (P<0.05), and increase the ratio of G(0)/G(1) phase cells, apoptosis rate and the protein level of E-cadherin (P<0.05), decreased the proportion of S-phase cells and the protein level of Vimentin (P<0.05). The dual luciferase report assay confirmed that circ_0000670 could target miR-515-5p, and miR-515-5p could bind to SIX1. Co-transfection of si-circ_0000670 and miR-515-5p inhibitor could significantly attenuate the effects of si-circ_0000670 on cell proliferation, migration, invasion, cell cycle and apoptosis (P<0.05). Co-transfection of miR-515-5p mimic and pcDNA-SIX1 could significantly reduce the effects of miR-515-5p mimic on cell proliferation, migration, invasion, cell cycle and apoptosis (P<0.05). Compared with the sh-NC group [volume=(596.20±125.46) mm(3) and weight=(538.00±114.39) g], the volume and weight of transplanted tumors in the sh-circ_0000670 group [volume=(299.20±47.58) mm 3 and weight=(289.80±48.73 g)] were significantly reduced (P<0.05), the expression levels of circ_0000670 and SIX1 were significantly reduced (P<0.05), and the expression level of miR-515-5p was significantly increased (P<0.05). Conclusion: Knockdown of circ_0000670 could inhibit cell proliferation, migration, invasion of gastric cancer cells, induce cell cycle arrest in G(0)/G(1) phase and promote cell apoptosis by regulating the miR-515-5p/SIX1 axis.


Subject(s)
Animals , Mice , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Mice, Nude , MicroRNAs/genetics , Stomach Neoplasms/genetics
9.
Article in Chinese | WPRIM | ID: wpr-981445

ABSTRACT

This study was designed to comprehensively characterize and identify the chemical components in traditional Chinese medicine Psoraleae Fructus by establishing an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) method in combination with in-house library. The chromatographic separation conditions(stationary phase, column temperature, mobile phase, and elution gradient) and key MS monitoring parameters(capillary voltage, nozzle voltage, and fragmentor) were sequentially optimized via single-factor experiments. A BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) was finally adopted, with the mobile phase consisting of 0.1% formic acid in water(A) and acetonitrile(B) at the flow rate of 0.4 mL·min~(-1) and column temperature of 30 ℃. Auto MS/MS was utilized for data acquisition in both positive and negative ion modes. By comparison with reference compounds, analysis of the MS~2 fragments, in-house library retrieval and literature research, 83 compounds were identified or tentatively characterized from Psoraleae Fructus, including 58 flavonoids, 11 coumarins, 4 terpenoid phenols, and 10 others. Sixteen of them were identified by comparison with reference compounds, and ten compounds may have not been reported from Psoraleae Fructus. This study achieved a rapid qualitative analysis on the chemical components in Psoraleae Fructus, which provided useful reference for elucidating its material basis and promoting the quality control.


Subject(s)
Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Tandem Mass Spectrometry , Cell Cycle , Coumarins
10.
Article in English | WPRIM | ID: wpr-929266

ABSTRACT

Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.


Subject(s)
Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Catechols , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Liver Neoplasms/genetics , Multidrug Resistance-Associated Proteins , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Article in English | WPRIM | ID: wpr-929130

ABSTRACT

In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.


Subject(s)
Animals , Mice , Apoptosis , Cell Cycle , Cell Differentiation , Embryoid Bodies , Induced Pluripotent Stem Cells/metabolism , Transforming Growth Factor beta/pharmacology
12.
Article in English | WPRIM | ID: wpr-927653

ABSTRACT

Objective@#SET8 is a member of the SET domain-containing family and the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20me1). SET8 has been implicated in many essential cellular processes, including cell cycle regulation, DNA replication, DNA damage response, and carcinogenesis. There is no conclusive evidence, however, regarding the effect of SET8 on radiotherapy. In the current study we determined the efficacy of SET8 inhibition on radiotherapy of tumors and the underlying mechanism.@*Methods@#First, we explored the radiotherapy benefit of the SET8 expression signature by analyzing clinical data. Then, we measured a series of biological endpoints, including the xenograft tumor growth in mice and apoptosis, frequency of micronuclei, and foci of 53BP1 and γ-H2AX in cells to detect the SET8 effects on radiosensitivity. RNA sequencing and subsequent experiments were exploited to verify the mechanism underlying the SET8 effects on radiotherapy.@*Results@#Low expression of SET8 predicted a better benefit to radiotherapy in lung adenocarcinoma (LUAD) and invasive breast carcinoma (BRCA) patients. Furthermore, genetic deletion of SET8 significantly enhanced radiation treatment efficacy in a murine tumor model, and A549 and MCF7 cells; SET8 overexpression decreased the radiosensitivity. SET8 inhibition induced more apoptosis, the frequency of micronuclei, and blocked the kinetics process of DNA damage repair as 53BP1 and γ-H2AX foci remained in cells. Moreover, RNF8 was positively correlated with the SET8 impact on DNA damage repair.@*Conclusion@#Our results demonstrated that SET8 inhibition enhanced radiosensitivity by suppressing DNA damage repair, thus suggesting that SET8 potentiated radiotherapy of carcinomas. As new inhibitors of SET8 are synthesized and tested in preclinical and clinical settings, combining SET8 inhibitors with radiation warrants consideration for precise radiotherapy.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinogenesis , Carcinoma/radiotherapy , Cell Cycle , Cell Line, Tumor , DNA Damage , DNA Replication , HeLa Cells , Histone-Lysine N-Methyltransferase , Radiotherapy
13.
Article in English | WPRIM | ID: wpr-971356

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascade system is one of the highly conserved signal systems in eukaryotic cells, which participates in the regulation of many biological processes. Under the stimulation of different signals (such as cytokines, neurotransmitters, and hormones), MAPK cascade activates downstream targets and controls a variety of cellular processes, including growth, immunity, inflammation, and stress response. In different cells, the effects of MAPK cascade on cells vary with the stimuli and the duration of stimulation. MAPK cascade induces Th differentiation and participates in T cell receptor signal pathway and B cell receptor signal pathway. MAPK cascades regulate various cellular activities related to the occurrence and development of cancer. A thorough and systematic understanding of the specific regulatory effects of MAPK cascade on various cellular processes will provide theoretical guidance for treating various diseases.


Subject(s)
Humans , MAP Kinase Signaling System , Signal Transduction , Cell Cycle , Neoplasms , Inflammation
14.
Rev. colomb. cancerol ; 25(3): 125-139, jul.-set. 2021. tab, graf
Article in English | LILACS | ID: biblio-1376839

ABSTRACT

Abstract Proteasomal degradation is an essential regulatory mechanism for cellular homeostasis maintenance. The speckle-type POZ adaptor protein (SPOP) is part of the ubiquitin ligase E3 cullin-3 RING-box1 complex, responsible for the ubiquitination and proteasomal degradation of biomolecules involved in cell cycle control, proliferation, response to DNA damage, epigenetic control, and hormone signaling, among others. Changes in SPOP have been associated with the development of different types of cancer, since it can act as a tumor suppressor mainly in prostate, breast, colorectal, lung cancer and liver cancer, due to point mutations and/or reduced expression, or as an oncogene in kidney cancer by protein overexpression. In endometrial cancer it has a dual role, since it can act as a tumor suppressor or as an oncogene. SPOP is a potential prognostic biomarker and a promising therapeutic target.


Resumen La degradación proteosómica es un mecanismo de regulación esencial para el mantenimiento de la homeostasis celular. La proteína adaptadora Speckle-type POZ (SPOP) hace parte del complejo ubiquitin ligasa E3 cullin-3 RING-box1, encargado de la ubiquitinación y degradación proteosomal de biomoléculas involucradas en el control del ciclo celular, proliferación, respuesta al daño de ADN, control epigenético, señalización hormonal, entre otros. Las alteraciones en SPOP han sido asociadas al desarrollo de diferentes tipos de cáncer, ya que puede actuar como supresor tumoral principalmente en cáncer de próstata, mama, colorrectal y pulmón, debido a mutaciones puntuales y/o expresión reducida o como oncogén en cáncer riñón por sobreexpresión de la proteína. En cáncer endometrial tiene un rol dual, ya que puede actuar como supresor tumoral o como oncogén. SPOP es considerado como un potencial biomarcador pronóstico y un objetivo terapéutico prometedor.


Subject(s)
Humans , Oncogenes , Biomarkers , Ubiquitin-Protein Ligases , Epigenomics , Neoplasms , Prognosis , DNA Damage , Cell Cycle , Cullin Proteins , Cell Cycle Checkpoints , Ligases
15.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 515-523, sept. 2021. ilus
Article in English | LILACS | ID: biblio-1369061

ABSTRACT

To explore a new underlying molecular mechanism of Huangkui Extract Powder (HKEP) in the alleviation of diabetic nephropathy (DN). Murine immortalized podocytes were divided into (i) normal glucose (NG, 5.6 mM), (ii) NG + HKEP (0.45 g/L), (iii) HG, and (iv) HG + HKEP (0.45 g/L) groups. MTT assay and flow cytometry were used to detect the podocyte proliferation, apoptosis and cell cycle. Cell viability was inhibited, and apoptosis increased in(iii) HG group compared with (i) NG group (p<0.05). mRNA and protein expression of nephrin and podocin significantly decreased in (iii) HG group compared with (i) NG group (p<0.05). When compared with (iii) HG group, (iv) HG + HKEP group had higher cell viability, lower apoptotic rate and higher mRNA and protein expression of nephrin and podocin (p<0.05). HKEP can attenuate HG-induced podocyte damage, which may be one of the mechanisms of HKEP for attenuating DN.


Explorar un nuevo mecanismo molecular subyacente del extracto del polvo de Huangkui (HKEP) en el alivio de la nefropatía diabética (ND). Los podocitos murinos inmortalizados se dividieron en (i) grupos de glucosa normal (NG, 5,6 mM), (ii) NG + HKEP (0,45 g/L), (iii) HG y (iv) HG + HKEP (0,45 g/L). Se utilizaron el ensayo MTT y la citometría de flujo para detectar la proliferación de podocitos, la apoptosis y el ciclo celular. La viabilidad celular se inhibió y la apoptosis aumentó en el grupo (iii) HG en comparación con el grupo (i) NG (p<0,05). La expresión de ARNm y proteínas de nefrina y podocina disminuyó significativamente en el grupo (iii) HG en comparación con el grupo (i) NG (p<0,05). En comparación con el grupo (iii) HG, el grupo (iv) HG + HKEP tuvo una mayor viabilidad celular, una tasa de apoptosis más baja y una expresión de ARNm y proteínas más altas de nefrina y podocina (p<0,05). HKEP puede atenuar el daño de los podocitos inducido por HG, que puede ser uno de los mecanismos de HKEP para atenuar la DN.


Subject(s)
Plant Extracts/administration & dosage , Diabetic Nephropathies/drug therapy , Podocytes/drug effects , Powders , Plant Extracts/genetics , Cell Cycle , Blotting, Western , Apoptosis/drug effects , Cell Culture Techniques , Reverse Transcriptase Polymerase Chain Reaction , Glucose
16.
Electron. j. biotechnol ; 52: 76-84, July. 2021. graf, ilus
Article in English | LILACS | ID: biblio-1283597

ABSTRACT

BACKGROUND: Butyrate is a histone deacetylase inhibitor that induces apoptosis and inhibits cell proliferation of colorectal cancer cells. To improve its anticancer activity, butyrate has been evaluated mixed with drugs and different molecules. Plant antimicrobial peptides are attractive anticancer alternative molecules because they show selective cytotoxic activity against different cancer cell lines. In this work, we explore if the plant defensin c-thionin (Capsicum chinense) can improve butyrate activity on Caco-2 cell line and we also determined the mechanism of death activated. RESULTS: The combined treatment of c-thionin (3.5 mM) and butyrate (50 mM) showed higher cytotoxicity on Caco-2 cells with respect to single treatments. Also, the combined treatment reduced cell proliferation and exhibited a higher rate of apoptosis than single treatments. Combined treatment induced caspases 8 and 9 activation to an extent comparable with that of butyrate while c-thionin did not activate caspases. Additionally, reactive oxygen species generation preceded the onset of apoptosis, and superoxide anion production was higher in cells treated with the combined treatment. CONCLUSIONS: The c-thionin from Habanero chili pepper improved the butyrate cytotoxicity on Caco-2 cells. This effect occurred through apoptosis induction associated with reactive oxygen species production. Therefore, the combination of butyrate with cytotoxic antimicrobial peptides could be an attractive strategy for cancer therapy.


Subject(s)
Humans , Butyrates , Capsicum/chemistry , Adenocarcinoma , Colonic Neoplasms , Cell Cycle , Reactive Oxygen Species , Apoptosis , Caco-2 Cells , Defensins , Thionins
17.
Article in Chinese | WPRIM | ID: wpr-880831

ABSTRACT

OBJECTIVE@#To investigate the role of NOV/CCN3 in regulating the proliferation of mesenchymal stem cells (MSCs) and its regulatory mechanism and assess the value of CCN3 as a proliferative factor in bone tissue engineering.@*METHODS@#Mouse embryonic fibroblasts (MEFs) were used as the MSC model, in which CCN3 expression was up-regulated and downregulated by transfection with the recombinant adenovirus vectors Ad-CCN3 and Ad-siCCN3, respectively. Flow cytometry was used to analyze the changes in cell cycle and apoptosis of the transfected cells. Western blotting was used to detect the expression levels of the proliferation indicators (PCNA, cyclin E, and cyclin B1) and the apoptosis indicators (Bax and Bcl-2) to assess the effect of modulation of CCN3 expression on MEF proliferation and apoptosis. CCN3 protein secretion by the cells was detected using ELISA. RT-qPCR and Western blotting were employed to analyze the changes in the expressions of Notch1, ligand DLL1, the downstream key proteins or genes (Hey1, P300, H3K9) and MAPK pathway-related proteins ERK1+2 and p-ERK1+2.@*RESULTS@#Flow cytometry showed that compared with the control cells, MEFs transfected with Ad-CCN3 exhibited significantly increased cell proliferation index (@*CONCLUSIONS@#CCN3 over-expression promotes the proliferation and inhibits apoptosis of MEFs possibly by inhibiting the classical Notch signaling pathway and activating the MAPK pathway


Subject(s)
Animals , Mice , Apoptosis , Cell Cycle , Cell Proliferation , Fibroblasts , Nephroblastoma Overexpressed Protein
18.
Article in Chinese | WPRIM | ID: wpr-880100

ABSTRACT

OBJECTIVE@#To investigate the effect and mechanism of a novel emodin derivative YX-18 on Burkitt lymphoma (BL) cells.@*METHODS@#MTT assay was used to detect the effect of YX-18 on the proliferation of BL cell lines CA46 and Raji. Annexin V-PE/7-AAD double staining assay was used for detecting the effect of YX-18 on the apoptosis of CA46 and Raji cells. PI/RNase staining was used to test the effect of YX-18 on CA46 and Raji cell cycle. JC-1 method was used to measure the changes of mitochondrial membrane potential after YX-18 treatment, and DAPI staining was used to detect the morphology of apoptotic cells. Western blot was used to analyze the distribution changes of NF-κB pathway protein (P65, P-P65, IκB, P-IκB) in the cytoplasm and cell nucleus, and also the expression changes of cyclin-related protein P21, CDK2, P-CDK2, Cycling D1, Cycling E1, and the apoptosis-related protein Caspase-3, Caspase-8, Caspase-9 and the proliferation-related protein C-MYC, BCL-2 by YX-18. Real-time fluorescence-quantitative PCR was used to evaluate the effects of YX-18 on mRNA levels of C-MYC and Ki-67 genes in CA46 and Raji cells, and EBNA-1 and EBER genes of EBV in Raji (EBV@*RESULTS@#Novel Emodin derivative YX-18 could effectively inhibit the proliferation of BL cell lines CA46 and Raji, showing a time-dependent effect (24, 48 and 72 h: r@*CONCLUSION@#The novel emodin derivative YX-18 can significantly inhibit the proliferation of Burkitt lymphoma cells, and induce the cell apoptosis and cycle arrest. The inhibitory effect of YX-18 on the proliferation of Burkitt lymphoma cells may be related with the effect of Caspase apoptosis pathway, the proliferation and apoptosis-related molecules, such as C-MYC and Ki-67, and also to the inhibition of NF-κB pathway.


Subject(s)
Humans , Apoptosis , Burkitt Lymphoma , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Emodin/pharmacology , NF-kappa B
19.
Article in Chinese | WPRIM | ID: wpr-880034

ABSTRACT

OBJECTIVE@#To observe the effects of tripterine on adhesion molecules and cell biological characteristics in mice with acute promyelocytic leukemia (APL) tumor.@*METHODS@#Eighteen SCID beige mice were caudal vein injected with NB4 cell lines (5×10@*RESULTS@#The neutrophil decrased and promyelocytes, NB4 cells, B lymphocytes and white blood cells increased in tumor-bearing group as compared with control group (P<0.05), and the expressions of serum P-selectin (P-selectin), soluble vascular adhesion molecule-1 (soluble vascular adhesion molecule-1, sVCAM-1) and soluble intercellular adhesion molecule-1 (soluble intercellular adhesion molecule-1, sICAM-1) all increased (P<0.05). The cell cycle showed that the proportion of G@*CONCLUSION@#Tripterine may not only inhibit the expression of sVCAM-1 and sICAM-1 proteins in APL tumor-bearing mice and reduce the adhesion of tumor cells, but also block tumor cells at G


Subject(s)
Animals , Humans , Mice , Cell Cycle , Cell Division , Intercellular Adhesion Molecule-1 , Leukemia, Promyelocytic, Acute/drug therapy , Mice, SCID , Triterpenes , Vascular Cell Adhesion Molecule-1
20.
Acta Physiologica Sinica ; (6): 761-771, 2021.
Article in Chinese | WPRIM | ID: wpr-921279

ABSTRACT

Nutrient overload-caused deregulation of glucose and lipid metabolism leads to insulin resistance and metabolic disorders, which increases the risk of several types of cancers. CREB/ATF bZIP transcription factor (CREBZF), a novel transcription factor of the ATF/CREB family, has emerged as a critical mechanism bridging the gap between metabolism and cell growth. CREBZF forms a heterodimer with other proteins and functions as a coregulator for gene expression. CREBZF deficiency in the liver attenuates hepatic steatosis in high fat diet-induced insulin-resistant mice, while the expression levels of CREBZF are increased in the livers of obese mice and humans with hepatic steatosis. Intriguingly, CREBZF also regulates cell proliferation and apoptosis via interaction with several transcription factors including STAT3, p53 and HCF-1. Knockout of CREBZF in hepatocytes results in enhanced cell cycle progression and proliferation capacity in mice. Here we highlight how the CREBZF signaling network contributes to the deregulation of metabolism and cell growth, and discuss the potential of targeting these molecules for the treatment of insulin resistance, diabetes, fatty liver disease and cancer.


Subject(s)
Animals , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Cycle , Cell Proliferation , Diet, High-Fat , Hepatocytes , Insulin Resistance , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL