Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 679
Filter
1.
Article in Chinese | WPRIM | ID: wpr-936192

ABSTRACT

Objective: To investigate the effects of adipose-derived mesenchymal stem cells (ADMSCs) on proliferation and hormone secretion of parathyroid cells in votro. Methods: The parathyroid cells and ADMSCs were obtained from 10 SD rats by cell separation and culture. The phenotype of P3 generation for ADMSCs was detected by flow cytometry. The co-culture of parathyroid cells and ADMSCs was conducted in the ratios of 2∶1, 1∶1, 1∶2 and 1∶5, respectively. The level of parathyroid hormone in cell supernatant was determined. The results were compared with the parathyroid hormone in the supernatant of parathyroid cells cultured separately in the corresponding number. The effects of ADMSCs on the hormone secretion of parathyroid cells were evaluated. SPSS 11.0 software was used for statistical analysis. Results: The primary culture of either parathyroid cells or ADMSCs and the co-culture of these cells in vitro were performed successfully, and the in vitro culture of different proportions of the two cells showed different effects on parathyroid hormone secretion. The co-culture of parathyroid cells and ADMSCs, especially in the ratio of 1∶5, facilitated the secretion of parathyroid hormone ((1.3±0.0) vs. (0.8±0.1), (1.3±0.0) vs. (0.9±0.0), (1.7±0.5) vs. (0.9±0.0), (1.7±0.0) vs. (1.2±0.2))ng/L with t value of 25.46, 64.30, 3.32, 7.16, P<0.05 on the 2nd, 4th, 6th and 8th days respectively. Secondly, when the ratio was 1∶2, the PTH level showed an upward trend. Conclusion: Parathyroid cells and ADMSCs can be co-cultured in vitro, facilitating the secretion of parathyroid hormone under the appropriate cell proportion such as the ratio of by parathyroid cells to ADMSCs at 1∶5.


Subject(s)
Adipose Tissue , Animals , Coculture Techniques , Mesenchymal Stem Cells , Rats , Rats, Sprague-Dawley
2.
Chinese Journal of Oncology ; (12): 737-742, 2022.
Article in Chinese | WPRIM | ID: wpr-940934

ABSTRACT

Objective: To study the effects of exosome secreted by ovarian cancer (OC) cell on the differentiation and metastasis of normal fibroblasts (NFs). Methods: NFs were collected from patients who underwent hysteromyoma resection in the Affiliated Hospital of Qingdao University from May to December 2019. Exosome was extracted from the culture supernatant of SKOV3 cells by using ultra-high-speed centrifugation. The NFs were co-cultured with condition medium (CM), exosome of SKOV3 (SKOV3-exo) and control medium. The expression levels of fibroblast activation protein (FAP) and α-smooth muscle actin (α-SMA) were detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The metastatic ability of NFs was detected by Transwell array. Results: Under the transmission electron microscope, the extracellular vesicles extracted from the culture supernatant of SKOV3 were 30-100 nm in diameter with cup holder-like bilayer membrane structure, and the protein expression levels of TSG101 and HSP27 in exosomes (1.00±0.05 and 1.12±0.13) were higher than those of ovarian cancer SKOV3 cells (0.22±0.21 and 0.36±0.14, respectively, P<0.05). PKH67 fluorescently labeled exosomes could be taken up by NFs. The expression levels of α-SMA and FAP mRNA in CM group(2.91±0.15 and 3.21±0.33)and SKOV3-exo group (3.50±0.21 and 4.63±0.24, respectively) were higher than that in blank group (1.00±0.06 and 1.00±0.13, P<0.05). The protein expression levels of α-SMA and FAP in CM group and SKOV3-exo group (0.89±0.11 and 1.25±0.09, 0.81±0.09 and 1.20±0.12) were higher than those in the blank group (0.12±0.31 and 0.11±0.19, respectively, P<0.05). The migrated numbers of cells in the CM group and SKOV3-exo group [(215.01±14.80) and (389.72±19.43), respectively] were higher than that in the blank group [(113.73±4.70), P<0.05]. Conclusion: The exosome secreted by SKOV3 cells can be taken up by NFs, which makes it to differentiate into cancer associated fibroblasts (CAFs) and significantly enhances its metastatic ability, indicating that OC cells may promote the transformation of normal ovarian mesenchymal fibroblasts to CAFs through exosome pathways, and then promote the development of ovarian cancer.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Exosomes , Female , Fibroblasts , Humans , Ovarian Neoplasms/metabolism
3.
Chinese Journal of Biotechnology ; (12): 1421-1431, 2022.
Article in Chinese | WPRIM | ID: wpr-927790

ABSTRACT

Traditional methods of microbial synthesis usually rely on a single engineered strain to synthesize the target product through metabolic engineering. The key cofactors, precursors and energy are produced by the introduced complex synthetic pathways. This would increase the physiological burden of engineering strains, resulting in a decrease in the yield of target products. The modular co-culture engineering has become an attractive solution for effective heterologous biosynthesis, where product yield can be greatly improved. In the modular co-culture engineering, the coordination between the population of different modules is essential for increasing the production efficiency. This article summarized recent advances in the application of modular co-culture engineering and population control strategies.


Subject(s)
Coculture Techniques , Metabolic Engineering , Population Control
4.
Chinese Journal of Biotechnology ; (12): 518-530, 2022.
Article in Chinese | WPRIM | ID: wpr-927725

ABSTRACT

Intense utilization and mining of fossil fuels for energy production have resulted in environmental pollution and climate change. Compared to fossil fuels, microalgae is considered as a promising candidate for biodiesel production due to its fast growth rate, high lipid content and no occupying arable land. However, monocultural microalgae bear high cost of harvesting, and are prone to contamination, making them incompetent compared with traditional renewable energy sources. Co-culture system induces self-flocculation, which may reduce the cost of microalgae harvesting and the possibility of contamination. In addition, the productivity of lipid and high-value by-products are higher in co-culture system. Therefore, co-culture system represents an economic, energy saving, and efficient technology. This review aims to highlight the advances in the co-culture system, including the mechanisms of interactions between microalgae and other microorganisms, the factors affecting the lipid production of co-culture, and the potential applications of co-culture system. Finally, the prospects and challenges to algal co-culture systems were also discussed.


Subject(s)
Biofuels , Biomass , Coculture Techniques , Flocculation , Microalgae
5.
Chinese Journal of Biotechnology ; (12): 460-477, 2022.
Article in Chinese | WPRIM | ID: wpr-927722

ABSTRACT

In recent years, the interaction mechanisms underpinning the synthetic microbial co-culture systems have gained increasing attention due to their potentials in various biotechnological applications. Exploration of the inter-species mechanisms underpinning the synthetic microbial co-culture system could contribute to a better understanding of the theoretical basis to further optimize the existing co-culture systems, and design new synthetic co-culture system for large-scale application. OMICS technologies such as genomics, transcriptomics, proteomics, and metabolomics could analyze the biological processes in a high throughput manner. Multi-omics analysis could achieve a "global view" of various members in the microbial co-culture systems, which presents opportunities in understanding synthetic microbial consortia better. This article summarizes recent advances in understanding the mechanisms of synthetic microbial co-culture systems using omics technologies, from the aspects of metabolic network, energy metabolism, signal transduction, membrane transport, stress response, community stability and structural rationality. All these findings could provide important theoretical basis for future application of the microbial co-culture systems with the aids of emerging biotechnologies such as synthetic biology and genome editing.


Subject(s)
Coculture Techniques , Genomics , Metabolomics , Proteomics , Synthetic Biology
6.
São Paulo; s.n; s.n; 2022. 94 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-1396412

ABSTRACT

Um dos maiores desafios no desenvolvimento de produtos probióticos é entender como os microrganismos interagem entre si e com o hospedeiro. Quando falamos em alimentos fermentados tradicionais, este obstáculo aumenta porque a matriz alimentar já possui um microbioma intrínseco. No entanto, também é conhecido que muitos microrganismos podem interagir e cooperar para sobreviver quando condições de estresse são encontradas. Assim, o objetivo deste trabalho foi isolar leveduras de quatro diferentes kombuchas em distintos momentos fermentativos e verificar a influência que leveduras isoladas de kombucha têm na manutenção da viabilidade da bactéria probiótica Bifidobacterium animalis subsp. lactis HN019 em condições de aerobiose. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa e Pichia membranifaciens foram leveduras encontradas nas kombuchas, das quais as duas últimas favoreceram a manutenção da alta viabilidade de HN019 em cocultura por 14 dias. Observou-se a viabilidade da bactéria acima de 9 log ao longo de todo o experimento, o que não foi observado em monocultura. Ademais, utilizou-se de análise de autoagregação, hidrofobicidade, atividade enzimática de proteases e fosfolipases das leveuras para analisar seu potencial patogênico. Observou-se que R. mucilaginosa demonstrou características semelhantes à Saccharomyces cerevisiae subsp. boulardii, e sua interação benéfica com HN019 reforça a possibilidade de que esta levedura seja uma chave para a inserção da bactéria em uma kombucha probiótica. Análises metabólicas foram realizadas e encontrou-se uma vasta diversidade de dipeptídeos, principalmente os compostos de prolina, durante a cocultura da bactéria com as leveduras. Tais dipeptídeos apresentam importantes mecanismos de ação no controle biológico e quorum sensing de bactérias e leveduras, e supostamente regulam a manutenção das relações mutualísticas entre ambos microrganismo


One of the biggest challenges in the development of probiotic products is to understand how microorganisms interact with each other and with the host. When we talk about traditional fermented foods, this obstacle increases because the food matrix already has an intrinsic microbiome. However, it is also known that many microorganisms can interact and cooperate to survive when stressful situations are encountered. Thus, the objective of this work was to isolate yeasts from four different kombuchas at different fermentation times and to verify the influence that yeasts isolated from kombucha have on maintaining the viability of the probiotic bacterium Bifidobacterium animalis subsp. lactis HN019 under aerobic conditions. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa and Pichia membranifaciens were yeasts found in kombuchas, of which the last two favored the maintenance of HN019 high viability in co-culture for 14 days. Bacteria viability above 9 log was observed throughout the experiment, which was not observed in monoculture. In addition, analysis of autoaggregation, hydrophobicity, enzyme activity of proteases and phospholipases of yeasts was used to analyze their pathogenic potential. It was observed that R. mucilaginosa demonstrated characteristics similar to Saccharomyces cerevisiae subsp. boulardii, and its beneficial interaction with HN019 reinforces the possibility that this yeast is a key to the insertion of the bacterium in a probiotic kombucha. Metabolic analysis were performed and a wide diversity of dipeptides, mainly proline-based, was found during the co-culture of the bacteria with the yeasts. Such dipeptides have important mechanisms of action in the biological control and quorum sensing of bacteria and yeast, and supposedly regulate the maintenance of mutualistic relationships between both microorganism


Subject(s)
Yeasts/classification , Kombucha Tea/analysis , Fermented Foods/analysis , Rhodotorula/classification , Coculture Techniques/methods , Probiotics , Dipeptides/agonists , Microbiota , Bifidobacterium animalis/pathogenicity
7.
Rev. MVZ Córdoba ; 26(2): 4-13, mayo-ago. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1347068

ABSTRACT

RESUMEN Objetivo. Evaluar el crecimiento y la supervivencia de Cryphiops caementarius en cocultivo con Oreochromis niloticus a diferentes densidades. Materiales y métodos. Se utilizaron camarones machos (5.86 cm y 7.65 g) y alevines revertidos de tilapia (5.65 cm y 2.61 g). Se emplearon nueve acuarios (55 L). En cada acuario se instalaron seis recipientes donde se sembró un camarón por recipiente (32 camarones/m2) y en el agua restante se sembraron tilapias a 100, 200 y 300 alevines/m3. Se empleó alimento balanceado. La ración diaria para camarones fue del 6% y para tilapia fue del 5% de la biomasa total. El experimento duró 90 días. Resultados. En el camarón, la longitud (6.46 cm), peso (9.37 g), las ganancias porcentuales en longitud (10.01% a 10.45%) peso (19.24% a 25.41%), y la supervivencia (88.89% a 94.44%) fueron similares (p<0.05) entre tratamientos. El efecto del síndrome de muerte por muda es discutido. En tilapia, la longitud (9.25 cm), peso (12.90 g), tasa de crecimiento absoluto (0.040 cm/día; 0.114 g/día), tasa de crecimiento específica (0.55% longitud/día; 1.759% peso/día) y la ganancia porcentual (64.21%; 389.48%) fueron mayores (p<0.05) a 100 y 200 alevines/m3. La supervivencia de tilapia fue similar (86.11%) entre tratamientos. Conclusiones. El crecimiento y la supervivencia del camarón fueron afectados por el síndrome de muerte por muda, más no por la presencia de tilapia en el sistema. En cambio, mayor crecimiento de tilapia se obtuvo con 100 alevines/m3 y la supervivencia fue similar entre tratamientos.


ABSTRACT Objective. To evaluate the growth and survival of Cryphiops caementarius in coculture with Oreochromis niloticus at different densities. Materials and methods. Male prawns (5.86 cm and 7.65 g) and reverse tilapia fingerlings (5.65 cm and 2.61 g) were used. Nine aquariums (55 L) were used. Six containers were installed in each aquarium, where one prawn was stocked per container (32 prawn/m2), and in the remaining water, tilapia was stocked at densities of 100, 200 and 300 fish/m3. Balanced feed was used. The daily ration for prawns was 6% and for tilapia, it was 5% of the total biomass. The experiment lasted 90 days. Results. In prawns, the length (6.46 cm), weight (9.37 g), percentage gains in length (10.01% at 10.45%) weight (19.24% a 25.41%), and survival (88.89% to 94.44%) were similar (p<0.05) between treatments. The effect of molting death syndrome is discussed. In tilapia, the length (9.25 cm), weight (12.90 g), absolute growth rate (0.040 cm/day; 0.114 g/day), specific growth rate (0.55% length/day; 1.759% weight/day) and percentage gain (64.21%; 389.48%) were greater (p<0.05) at 100 and 200 fish/m3. Tilapia survival was similar (86.11%) between treatments. Conclusions. Prawn growth and survival were affected by molt death syndrome but not by the presence of tilapia in the system. In contrast, greater growth of tilapia was obtained with 100 fish/m3, although survival was similar between treatments.


Subject(s)
Animals , Tilapia , Biomass , Coculture Techniques , Cichlids
8.
Electron J Biotechnol ; 49: 5-13, Jan. 2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1291618

ABSTRACT

BACKGROUND: Opsonization, is the molecular mechanism by which target molecules promote interactions with phagocyte cell surface receptors to remove unwanted cells by induced phagocytosis. We designed an in vitro system to demonstrate that this procedure could be driven to eliminate adipocytes, using peptides mimicking regions of the complement protein C3b to promote opsonization and enhance phagocytosis. Two cell lines were used: (1) THP-1 monocytes differentiated to macrophages, expressing the C3b opsonin receptor CR1 in charge of the removal of unwanted coated complexes; (2) 3T3-L1 fibroblasts differentiated to adipocytes, expressing AQP7, to evaluate the potential of peptides to stimulate opsonization. (3) A co-culture of the two cell lines to demonstrate that phagocytosis could be driven to cell withdrawal with high efficiency and specificity. RESULTS: An array of peptides were designed and chemically synthesized p3691 and p3931 joined bound to the CR1 receptor activating phagocytosis (p < 0.033) while p3727 joined the AQP7 protein (p < 0.001) suggesting that opsonization of adipocytes could occur. In the co-culture system p3980 and p3981 increased lipid uptake to 91.2% and 89.0%, respectively, as an indicator of potential adipocyte phagocytosis. CONCLUSIONS: This in vitro model could help understand the receptor­ligand interaction in the withdrawal of unwanted macromolecules in vivo. The adipocyte-phagocytosis discussed may help to control obesity, since peptides of C3b stimulated the CR1 receptor, promoting opsonisation and phagocytosis of lipidcontaining structures, and recognition of AQP7 in the differentiated adipocytes, favored the phagocytic activity of macrophages, robustly supported by the co-culture strategy.


Subject(s)
Phagocytosis , Complement System Proteins , Adipocytes , In Vitro Techniques , Opsonin Proteins , Coculture Techniques , Foam Cells , Macrophages , Microscopy, Fluorescence
9.
Journal of Experimental Hematology ; (6): 1812-1818, 2021.
Article in Chinese | WPRIM | ID: wpr-922340

ABSTRACT

OBJECTIVE@#To investigate the effect of gap junction intercellular communication (GJIC) combined by connexin43 (Cx43) and its signal to the biobehavior of multiple myeloma (MM) cells, and its possible mechanism.@*METHODS@#The mesenchymal stem cell (MSC) cells were isolated and cultured from patients with MM and normal donors. The expression of connexin43 (Cx43) in MSC cells from different sources was detected by RT-PCR and Western blot. The side population (SP) cells were sorted by flow cytometry (FCM). The effect of MSC cells from different sources to the cell cycle, Cx43 expression, colony formation in vitro, stem cell related genes expression, cytokines secretion and chemoresistance in MM SP cells as well as with or without Cx43 inhibitor 18α-glycyrrhetinic acid (18α-GA) was observed.@*RESULTS@#There was no significantly difference between the MSC isolated from normal donor and MM patients. Western blot showed that Cx43 expression in SP cells was up-regulated when the cells were incubated with MSC, and medium containing 18α-GA could partially inhibit it, moreover, it was more significant in MSC cells of MM patients. The ability of colony formation of SP cells in vitro was higher than those of MM cells and MM-MSC could promote the colony formation in a co-culture manner. The effect of MM-MSC to SP cells was down-regulated after 18α-GA was added. RT-PCR showed that there was several important stem cell-related genes including c-myc, Oct-4 Klf-4, and Sox-2 were found in RPMI 8226 cells, but those cells were up-regulated in SP cells (P0.05). Cytometry bead array assays showed that MM-MSCs could secrete high level of IL-6, but the levels of IL-6, IL-10 and TGF-β increased significantly when the MM-MSCs were co-cultured with SP cells (P<0.05), especially the levels of IL-6 and IL-10 were significantly higher than cultured alone. There was no significant change in the levels of bFGF and IL-17 before and after co-cultured. The levels of IL-6, IL-10 and TGF-β in supernatant decreased significantly after GJ inhibitor 18α-GA was added. PI/Annexin V assay showed that MM cells were sensitive to bortezomib (BTZ)-induced apoptosis, but the sensitivity for SP cells was weaker. The ratio of cell apoptosis was 75.2%±0.77% and 8.12%±0.86% (P<0.001), respectively. MM-MSC could down-regulate the cell apoptosis induced by BTZ, while the sensitivity of MM cells to BTZ could be partially recovered after GJ inhibitor was added.@*CONCLUSION@#MSC derived from MM patients can enhance GJIC to maintain its "hematopoiesis" by up-regulating the expression of Cx43 in MM cells, and at the same time promote cell proliferation and drug recistance by secreting multiple cytokines, which finally contributes to the relapse of MM.


Subject(s)
Cell Communication , Coculture Techniques , Connexin 43 , Humans , Mesenchymal Stem Cells , Multiple Myeloma
10.
Article in Chinese | WPRIM | ID: wpr-921928

ABSTRACT

OBJECTIVE@#To explore the effects of siRNA hsa-circ-0000885 modified bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation, cell proliferation and apoptosis in order to provide new ideas and methods for the clinical treatment of osteoporosis (OP).@*METHODS@#From September 2018 to February 2020, 13 patients with osteoporosis admitted to our hospital were selected as the research objects, including 11 females and 2 males, with an age of (65.45±10.77) years old. After obtaining the informed consent of patients, peripheral blood tissues were extracted. Then the expression level of cir-cRNA in peripheral blood mononuclear cells(PBMC) was detected by circ RNA chip. The expression of circ RNA was silenced by siRNA technology. The BMSCs were transfected with lentivirus. According to the siRNA interference plasmid hsa-circ-0000885, the cells were divided into the blank group, the empty vector group and the siRNA interference group. After 72 hours of treatment, the cell cycle was detected by flow cytometry, the apoptosis level was detected by AV-PI kit, and the osteogenic differentiation ability of BMSCs was detected by ALP staining.@*RESULTS@#The expression of hsa-circ-0000885 in PBMC of patients with osteoporosis was significantly higher than that of healthy controls (@*CONCLUSION@#The lentivirus mediated siRNA hsa-circ-0000885 plasmid transfected into BMSCs and osteoclast co culture system can promote cell proliferation, inhibit apoptosis and promote osteogenic differentiation of BMSCs, which can be used as a potential therapeutic target for OP patients.


Subject(s)
Aged , Apoptosis/genetics , Cell Differentiation , Cell Proliferation/genetics , Cells, Cultured , Coculture Techniques , Female , Humans , Lentivirus , Leukocytes, Mononuclear , Mesenchymal Stem Cells , Middle Aged , Osteoclasts , Osteogenesis/genetics , RNA, Small Interfering/genetics , Transfection
11.
Electron. j. biotechnol ; 44: 33-40, Mar. 2020. graf, tab, ilus
Article in English | LILACS | ID: biblio-1087694

ABSTRACT

BACKGROUND: The preparation of broad bean koji is a key process in the production of Pixian broad bean paste (PBP). Protease is essential for the degradation of proteins during PBP fermentation. To obtain broad bean koji with high protease activity using the cocultivated strains of Aspergillus oryzae QM-6 (A. oryzae QM-6) and Aspergillus niger QH-3 (A. niger QH-3), the optimization of acid and neutral protease activities was carried out using Box­Behnken design with response surface methodology (RSM). RESULTS: The optimum conditions were found to be as follows: inoculation proportion (X1), 3:1 (A. oryzae QM-6: A. niger QH-3, w/w); culture temperature (X2), 33°C; inoculum size (X3), 0.5% (w/w); incubation time (X4), 5 d. The acid and neutral protease activities were 605.2 ± 12.4 U/g and 1582.9 ± 23.7 U/g, respectively, which were in good agreement with the predicted values. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles revealed that the broad bean koji extracellular proteins in the case of cocultivation were richer compared to those in the case of A. oryzae QM-6 or A. niger QH-3 strain only. In addition, the free amino acids (FAAs) in the fermentation product were 55% higher in the cocultivation process than in that involving only A. oryzae QM-6, further confirming the diversity of proteases in the fermentation products. CONCLUSIONS: The optimal conditions of koji-making in PBP were obtained using RSM. The cocultivation of A. oryzae and A. niger increases the overall enzyme activities in the culture medium and the FAAs content, which would thus have potential application in the PBP industry.


Subject(s)
Peptide Hydrolases/metabolism , Aspergillus niger , Aspergillus oryzae , Fabaceae/enzymology , Coculture Techniques , Vicia faba , Electrophoresis, Polyacrylamide Gel , Fermentation , Amino Acids
12.
Article in Chinese | WPRIM | ID: wpr-880757

ABSTRACT

OBJECTIVE@#To investigate high-salt exposure-induced polarization of mononuclear macrophages and the changes in proliferation and phenotypic transformation of renal fibroblasts in a co-culture system.@*METHODS@#Cultured mononuclear macrophages were exposed to high salt (161 mmol/L Na +) for 2 h and the surface markers of M0, M1 and M2-type macrophages were detected with RT-qPCR. The culture medium of the macrophages in normal and high-salt groups was collected for detection of the mRNA and protein levels of IL-6 and TGF-β1 using RT-qPCR and ELISA. A co-culture system of high salt-exposed macrophages and renal fibroblasts (NRK-49F) was established using a Transwell chamber, and the changes in proliferation and migration of NRK-49F cells were examined using EdU assay and Transwell assay, respectively. Western blotting was performed to detect the expressions of collagen I, collagen III and collagen α-SMA in NRK-49F cells.@*RESULTS@#The high salt-exposed macrophages showed significantly increased mRNA levels of M2-type macrophage surface markers mannose receptor and arginase (@*CONCLUSIONS@#High-salt exposure induces polarization of mononuclear macrophages into M2-type macrophages and promotes secretion of IL-6 and TGF-β1 by the macrophages to induce the proliferation and phenotypic transformation of NRK-49F cells.


Subject(s)
Cell Proliferation , Coculture Techniques , Fibroblasts , Kidney , Macrophages , Transforming Growth Factor beta1/genetics
13.
Chinese Journal of Cardiology ; (12): 500-506, 2020.
Article in Chinese | WPRIM | ID: wpr-941138

ABSTRACT

Objective: To investigate whether CD137 signaling can promote angiogenesis via regulating macrophage M1/M2 polarization. Methods: (1) The primary peritoneal macrophages in mice induced by 3% thiglycollate broth were divided into three groups: control group, CD137 signaling activated group and CD137 signaling inhibited group. Various specific markers of M1 and M2 macrophages were detected to observe the phenotype change of macrophages, and the macrophages protein expression of CD137, CD86 and CD206 was detected by flow cytometry (FCM). The protein and mRNA expression of induced nitric oxide synthase (iNOS), arginase Ⅰ(Arg-1) was determined by Western blot and RT-PCR, respectively. The secretion levels of IL-12 and IL-10 in culture supernatant of macrophages were detected by ELISA. (2) Macrophages were co-cultured with the endothelial cells (bEnd.3), and macrophages were implanted in the upper chamber, endothelial cells were implanted in stromal glue of the lower chamber. The experiment was divided into three groups: the control group, CD137 signaling activated group and peroxisome proliferator-activated receptor-γ (PPAR-γ) inhibited group, and tube formation ability of endothelial cells in each group was determined. Results: (1) The purity of primary peritoneal macrophages in mice was (97.93±1.31)%. The expression of CD137 on the surface of macrophages was (97.40±2.70)%. (2) Compared with control group, the mRNA and protein expression levels of Arg-1 were significantly increased and the mRNA and protein expression of iNOS were significantly decreased in CD137 signaling activated group (all P<0.05). Compared with CD137 signaling activated group, the mRNA and protein expression of Arg-1 were significantly lower and the mRNA and protein expression levels of iNOS were significantly higher in CD137 signaling inhibited group (all P<0.05). FCM results showed that the average fluorescence intensity of CD206 was higher, while the average fluorescence intensity of CD86 was lower in CD137 signaling activated group than in control group (P<0.05, P<0.01, respectively); the expression of CD206 was significantly lower, while the expression of CD86 was higher, in the CD137 signaling inhibited group than in CD137 signaling activated group (P<0.05, P<0.01, respectively). ELISA results showed that the secretion of IL-10 was higher, and the secretion level of IL-12 was significantly lower in CD137 signaling activated group than in control group (both P<0.01); the secretion of IL-10 was significantly lower and the secretion of IL-12 was significantly higher in CD137 signaling inhibited group than in CD137 signaling activated group (both P<0.05). (3) Values of the formation of tube length and branch number were both longer in CD137 signaling activated group than control group (P<0.05). The formation of the tube length and branch number were less in PPAR-γ inhibited group than in CD137 signaling activated group (P<0.05). Conclusion: CD137 signaling can promote angiogenesis by regulating macrophage M1/M2 polarization.


Subject(s)
Animals , Coculture Techniques , Endothelial Cells , Macrophages , Mice , Neovascularization, Pathologic , Signal Transduction
14.
Article in Chinese | WPRIM | ID: wpr-827552

ABSTRACT

OBJECTIVE@#This study aimed to compare the cartilage regeneration of the stromal vascular fraction (SVF) cells and adipose-derived mesenchymal stem cells (ASCs) cocultured with chondrocytes seeded on the scaffolds.@*METHODS@#The cellular morphologies and proliferation capabilities on the scaffolds were evaluated. The scaffolds with the cocul-ture of ASCs/SVF and chondrocytes were implanted into the full thickness cartilage defective rabbit joints for 10 weeks.@*RESULTS@#The cells seeded into the scaffolds showed good adhesion and proliferation. Implantation with SVF and chondrocytes revealed desirable in vitro healing outcomes.@*CONCLUSIONS@#The SVF cells were better than ASCs in terms of the formation of cartilage matrix in a coimplantation model. Without in vitro expansion, the SVF cells are good cell sources for cartilage repair.


Subject(s)
Adipose Tissue , Animals , Cartilage , Chondrocytes , Coculture Techniques , Rabbits , Regeneration
15.
Chinese Journal of Biotechnology ; (12): 652-665, 2020.
Article in Chinese | WPRIM | ID: wpr-827003

ABSTRACT

Co-culture systems consisted of photosynthetic microorganisms and others heterotrophic microbes have attracted great attention in recent years. These systems show many advantages when compared with single culture grown under autotrophic conditions, such as less vulnerable to pollution and more stability, thus have been applied to wastewater treatment, soil remediation, biodegradable harmful substances, and production of high value-added products. In order to explore basic theory and further applications, we summarize here recent progresses in artificial co-culture systems of using photosynthetic microorganisms, to provide a current scientific understanding for the rational design of the co-culture system based on photosynthetic microorganisms using synthetic biology.


Subject(s)
Coculture Techniques , Heterotrophic Processes , Microbiological Techniques , Microbiota , Physiology , Photosynthesis , Physiology , Synthetic Biology
16.
Int. j. morphol ; 37(4): 1203-1209, Dec. 2019. graf
Article in English | LILACS | ID: biblio-1040112

ABSTRACT

In vitro modeling of neurodegenerative diseases is now possible by using patient-derived induced pluripotent stem cells (iPS). Through them, it is nowadays conceivable to obtain human neurons and glia, and study diseases cellular and molecular mechanisms, an attribute that was previously unavailable to any human condition. Amyotrophic lateral sclerosis (ALS) is one of the diseases that has gained a rapid advance with iPS technology. By differentiating motor neurons from iPS cells of ALS- patients, we are studying the mechanisms underlying ALS- disease onset and progression. Here, we introduce a cellular platform to help maintain longevity of ALS iPS-motor neurons, a cellular feature relevant for most late-onset human diseases. Long term cultures of patient-derived iPS cells might prove to be critical for the development of personalized-drugs.


Actualmente es posible modelar in vitro enfermedades neurodegenerativas humanas mediante el uso de células madre pluripotentes inducidas (iPS) derivadas del paciente. A través de ellas, es hoy concebible obtener neuronas y glía humanas, y estudiar mecanismos celulares y moleculares de enfermedades, un atributo que anteriormente no era posible para ninguna condición humana. La esclerosis lateral amiotrófica (ELA) es una de las enfermedades que se ha beneficiado con la tecnología de iPS. Al diferenciar neuronas motoras de células iPS obtenidas de pacientes con ELA, hemos iniciado estudios sobre los mecanismos que subyacen a la aparición y progresión de la enfermedad. Aquí, presentamos el desarrollo de una plataforma celular que permite extender la longevidad de las neuronas motoras derivadas de iPS, una característica relevante para la mayoría de las enfermedades humanas de inicio tardío. Los cultivos a largo plazo de células iPS provenientes de pacientes pueden ser determinantes en el desarrollo de terapias asociadas a la medicina de precisión.


Subject(s)
Humans , Animals , Mice , Induced Pluripotent Stem Cells/cytology , Amyotrophic Lateral Sclerosis/metabolism , Immunohistochemistry , Cell Line , Coculture Techniques , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy
17.
Article in English | WPRIM | ID: wpr-719450

ABSTRACT

BACKGROUND/AIMS: This study aimed to determine the regulatory role of N-acetyl-l-cysteine (NAC), an antioxidant, in interleukin 17 (IL-17)-induced osteoclast differentiation in rheumatoid arthritis (RA). METHODS: After RA synovial fibroblasts were stimulated by IL-17, the expression and production of receptor activator of nuclear factor κ-B ligand (RANKL) was determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis was also determined after co-cultures of IL-17-stimulated RA synovial fibroblasts, Th17 cells and various concentrations of NAC with monocytes. After human peripheral CD4⁺ T cells were cultured with NAC under Th17 condition, IL-17, interferon γ, IL-4, Foxp3, RANKL, and IL-2 expression and production was determined by flow cytometry or ELISA. RESULTS: When RA synovial fibroblasts were stimulated by IL-17, IL-17 stimulated the production of RANKL, and NAC reduced the IL-17-induced RANKL production in a dose-dependent manner. NAC decreased IL-17-activated phosphorylation of mammalian target of rapamycin, c-Jun N-terminal kinase, and inhibitor of κB. When human peripheral blood CD14⁺ monocytes were cultured with macrophage colony-stimulating factor and IL-17 or RANKL, osteoclasts were differentiated, and NAC reduced the osteoclastogenesis. After human peripheral CD4⁺ T cells were co-cultured with IL-17-pretreated RA synovial fibroblasts or Th17 cells, NAC reduced their osteoclastogenesis. Under Th17 polarizing condition, NAC decreased Th17 cell differentiation and IL-17 and RANKL production. CONCLUSIONS: NAC inhibits the IL-17-induced RANKL production in RA synovial fibroblasts and IL-17-induced osteoclast differentiation. NAC also reduced Th17 polarization. NAC could be a supplementary therapeutic option for inflammatory and bony destructive processes in RA.


Subject(s)
Acetylcysteine , Arthritis, Rheumatoid , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Fibroblasts , Flow Cytometry , Humans , Interferons , Interleukin-17 , Interleukin-2 , Interleukin-4 , JNK Mitogen-Activated Protein Kinases , Macrophage Colony-Stimulating Factor , Monocytes , Osteoclasts , Osteogenesis , Phosphorylation , RANK Ligand , Real-Time Polymerase Chain Reaction , Sirolimus , T-Lymphocytes , Th17 Cells
18.
Asia Pacific Allergy ; (4): e4-2019.
Article in English | WPRIM | ID: wpr-750170

ABSTRACT

Food allergy is a growing global public health concern. As treatment strategies are currently limited to allergen avoidance and emergency interventions, there is an increasing demand for appropriate models of food allergy for the development of new therapeutics. Many models of food allergy rely heavily on the use of animals, and while useful, many are unable to accurately reflect the human system. In order to bridge the gap between in vivo animal models and clinical trials with human patients, human models of food allergy are of great importance. This review will summarize the commonly used human ex vivo and in vitro models of food allergy and highlight their advantages and limitations regarding how accurately they represent the human in vivo system. We will cover biopsy-based systems, precision cut organ slices, and coculture systems as well as organoids and organ-on-a-chip. The availability of appropriate experimental models will allow us to move forward in the field of food allergy research, to search for effective treatment options and to further explore the cause and progression of this disorder.


Subject(s)
Allergens , Anaphylaxis , Animals , Biological Phenomena , Coculture Techniques , Emergencies , Food Hypersensitivity , Humans , In Vitro Techniques , Models, Animal , Models, Theoretical , Organoids , Public Health
19.
Article in English | WPRIM | ID: wpr-742308

ABSTRACT

Trichomoniasis is a common sexually transmitted infection caused by Trichomonas vaginalis, which actually does not exist a vaccine for control or prevention. Thus, the identification of new and potent immunogens in T. vaginalis, which can contribute to the development of a vaccine against this parasite, is necessary. Therefore, the aim of this work was to evaluate the potential of a recombinant Transient Receptor Potential-like channel of T. vaginalis (TvTRPV), as a promising immunogen in BALB/c mice. First, TvTRPV was cloned and expressed as a recombinant protein in Escherichia coli BL21 cells and purified by nickel affinity. Next, BALB/c mice were immunized and the antibody levels in mice serum and cytokines from the supernatant of macrophages and from co-culture systems were evaluated. Recombinant TvTRPV triggered high levels of specific total IgG in sera from the immunized mice. Also, a statistically significant increase of cytokines: IL-1β, IL-6, and TNF-α after stimulation with the corresponding antigens in vitro, was identified. Moreover, co-cultures using CD4⁺ T cells from immunized mice were able to identify higher levels of IL-10 and IFN-γ. These results were useful to validate the immunogenicity of TvTRPV in BALB/c mice, where IL-10-IFN-γ-secreting cells could play a role in infection control, supporting the potential of TvTRPV as a promising target for vaccine against T. vaginalis.


Subject(s)
Animals , Calcium , Clone Cells , Coculture Techniques , Cytokines , Escherichia coli , Immunoglobulin G , In Vitro Techniques , Infection Control , Interleukin-10 , Interleukin-6 , Macrophages , Mice , Nickel , Parasites , Sexually Transmitted Diseases , T-Lymphocytes , Trichomonas vaginalis , Trichomonas
20.
Article in English | WPRIM | ID: wpr-766105

ABSTRACT

PURPOSE: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. METHODS: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. RESULTS: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. CONCLUSIONS: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.


Subject(s)
Blotting, Western , CDC2 Protein Kinase , Cell Count , Cell Cycle , Cell Proliferation , Coculture Techniques , Colon , Cyclin B1 , Cytoplasm , Fibroblasts , Flow Cytometry , Fluorescent Antibody Technique , G2 Phase , Helicobacter pylori , Helicobacter , Humans , Methods , Microscopy, Electron, Transmission , Mouth , Periodontal Ligament , Periodontitis , Periodontium , Phosphorylation , Real-Time Polymerase Chain Reaction , Serine , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL