Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.691
Filter
1.
Vitae (Medellín) ; 31(1): 1-11, 2024-05-03. Ilustraciones
Article in English | LILACS, COLNAL | ID: biblio-1553606

ABSTRACT

Background: Mild Colombian coffees are recognized worldwide for their high-quality coffee cup. However, there have been some failures in post-harvest practices, such as coffee grain fermentation. These failures could occasionally lead to defects and inconsistencies in quality products and economic losses for coffee farmers. In Colombia, one of the fermentation methods most used by coffee growers is wet fermentation, conducted by submerging the de-pulped coffee beans for enough time in water tanks to remove the mucilage. Objectives: We evaluated the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours) on the total number of microbial groups. We also identified microorganisms of interest as starter cultures. Methods: We used a completely randomized experimental design with two factors; the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours), for 9 treatments with two replicates. During the coffee fermentation (1,950 g), the pH and °Brix were monitored. Total counts of different microbial groups (mesophiles, coliforms, lactic-acid bacteria, acetic-acid bacteria, and yeasts) were performed. Various isolates of microorganisms of interest as starter cultures (lactic-acid bacteria and yeasts) were identified using molecular sequencing techniques. Results: 21 lactic-acid bacteria (LAB) isolates and 22 yeasts were obtained from the different mini-batch fermentation systems. The most abundant lactic-acid bacteria species found were Lactiplantibacillus plantarum (46%) and Levilactobacillus brevis (31%). Pichia kluivery (39%) and Torulaspora delbrueckii (22%) were the most abundant yeast species. Conclusion The studied factors did not have effect over the microorganism's development. The identified bacterial and yeasts species have potential as starter cultures for better-quality coffees and in fermentation-related applications.


Antecedentes: Los cafés suaves lavados colombianos son reconocidos a nivel mundial por su buena puntuación sensorial; sin embargo, se han detectado fallas en las prácticas de postcosecha, como lo es la fermentación de los granos de café. Dichas fallas pueden causar defectos y carecer de consistencia en la calidad del producto, ocasionando pérdidas económicas para los caficultores. En Colombia, uno de los métodos más usados por los caficultores es la fermentación húmeda, la cual consiste en sumergir los granos de café despulpado en tanques con agua por un período de tiempo que permita la remoción del mucílago. Objetivos: La presente investigación evaluó la incidencia que tienen la proporción agua/granos despulpados de café (I: 0/25, II: 10/25, III: 20/25) y el tiempo final de fermentación (24, 48 y 72 horas) en el recuento final de grupos microbianos. Por otra parte, se identificaron taxonómicamente microorganismos de interés para su uso como cultivos iniciadores. Métodos: Mini-lotes consistieron en café despulpado (1950 g) puesto en recipientes de plástico abiertos y sumergidos en agua. Se aplicó un diseño experimental completamente aleatorizado de dos factores (proporción agua/ granos de café despulpado y tiempo) a tres niveles, para un total de nueve tratamientos con dos replicas. Durante las fermentaciones de café (1,950 g), el pH y los grados ºBrix, fueron monitoreados. Se realizaron los recuentos totales de los diferentes grupos microbianos: mesófilos, coliformes, bacterias ácido-lácticas, bacterias ácido-acéticas y levaduras. Se identificaron molecularmente diferentes aislados con potencial para ser usados como cultivos iniciadores (bacterias ácido-lácticas y levaduras). Resultados: Los resultados obtenidos mostraron que no hubo diferencia estádisticamente significativa entre los tratamientos aplicados y el recuento final de microorganismos. Un total de 21 aislados de bacterias ácido-lácticas (BAL) y 22 levaduras lograron obtenerse a partir de los diferentes sistemas de fermentación en mini-lote. Las especies de bacterias ácido-lácticas con mayor porcentaje acorde a su identificación taxonómica, corresponden a Lactiplantibacillus plantarum (46%), Levilactobacillus brevis (31%). Las especies de levaduras con mayor porcentaje acorde a su identificación taxonómica corresponden a Pichia kluivery (39%) y Torulaspora delbrueckii (22%). Conclusión Los factores estudiados no afectaron el crecimiento de ninguno de los grupos microbianos presentes en la fermentacion del café. Las especies de microorganismos identificados tienen potencial para se usados como cultivos starter o en aplicaciones dentro de las ciencias de fermentación.


Subject(s)
Humans , Fermentation , Yeasts , Microbiological Techniques , Coffea , Lactobacillales
2.
J. Health Sci. Inst ; 41(2): 85-88, apr-jun 2023. Tabelas
Article in Portuguese | LILACS | ID: biblio-1531186

ABSTRACT

Objetivo ­ Realizar análises bromatológicas de umidade, proteínas, pH e cinzas em missôs artesanais. A fermentação é um processo biotecnológico que tem sido utilizado para modificar e produzir alimentos desde a antiguidade. Nas últimas duas décadas, o interesse nos efeitos benéficos dos fermentados na saúde humana aumentou e tornou essa categoria de alimentos cada vez mais popular principalmente no Oriente. No mercado há uma ampla variedade de pastas à base de soja fermentada por microorganismos sendo conhecido popularmente como missô. Métodos ­ As análises realizadas foram secagem direta em estufa a 105°C graus para determinação da umidade (%) e calcinação em mufla para cinzas (%), determinação de pH por meio do peagâmetro e análise de proteínas através do teste de Biureto. Resultados ­ No presente estudo as amostras obtiveram um teor de umidade entre 52,71% a 60,48%, teor de cinzas variando de 1,12% a 22,7%, pH entre 5,35 e 8,68, e um teor de proteínas variando de 11,1% a 13,2%. Discussão ­ Foi interpretado e comparado os resultados obtidos com as análises de outros estudos, além disso, apontado algumas questões do campo bromatológico das pesquisas dos estudos comparados e as limitações do presente trabalho. Conclusão ­ O processo fermentativo de alimentos com microorganismos resulta em um produto diferenciado que pode ser benéfico a saúde com diferentes características organolépticas. Nossos resultados foram parcialmente semelhantes com outras pesquisas sendo que


Subject(s)
Humans , Glycine max , Fermentation , Food Analysis , Proteins
3.
Vitae (Medellín) ; 30(2): 1-11, 2023-05-08. Ilustraciones
Article in English | LILACS, COLNAL | ID: biblio-1538058

ABSTRACT

Background: The concern about consuming healthy foods has increased in recent years. Not only are they expected to comply with essential feeding functions, but they also provide health benefits. Probiotics are one of the main functional components expected to be present in functional foods and beverages. They provide many health benefits and stand out due to their metabolic capacities and adaptability to different habitats. In addition, Quinoa seeds contain valuable quantities of quality protein and nutritional values of carbohydrates, proteins, fats, fibers, and mineral substances for which they are considered an ideal dietary alternative. Objectives: This research aimed to elaborate on a probiotic quinoa beverage, which combines the effect of enzymatic hydrolysis of the starches obtained from its seeds with lactic acid fermentation using probiotic cultures, seeking to enhance its nutritional properties and converting it into a functional beverage. Methods: For this, fermentations were carried out in three different concentrations of probiotic cultures (inoculum): 10%, 5%, 1%, and three other different fermentation times: 8, 10, and 12 hours. pH, Total titrable acidity expressed as lactic acid (%), reducing sugars, and soluble solids were measured. After that, the beverage was formulated with honey, carob, preservatives, and mango flavoring. Results: Statistical analysis indicated optimal conditions were achieved with 10% probiotic cultures and 10 hours of fermentation. The microbiological analysis confirmed the presence of probiotic microorganisms at a concentration of 108 CFU/mL. Proximal analysis indicated that the composition contained 84.6 Kcal, 19.3 g of carbohydrates, and 1.4 g of protein per 100 g of beverage. Conclusions: The probiotic quinoa beverage was produced and can be considered in the group of plant-based foods, as well as a functional beverage, since the probiotic cultures it contains contribute to maintaining the intestinal microbiota and prevent the onset of chronic diseases.


Antecedentes: La preocupación por el consumo alimentos saludables ha aumentado en los últimos años. No solo se espera que cumplan con las funciones esenciales de alimentación, sino que también brinden beneficios para la salud. Los probióticos son uno de los principales componentes funcionales que se espera que estén presentes en los alimentos y bebidas funcionales. Aportan múltiples beneficios para la salud y destacan por sus capacidades metabólicas y adaptabilidad a diferentes hábitats. Además, las semillas de quinua contienen valiosas cantidades de proteína de notable calidad, valores nutricionales de carbohidratos, proteínas, grasas, fibras y sustancias minerales por lo que se consideran una alternativa dietética ideal. Objetivos: Esta investigación tuvo como objetivo elaborar una bebida probiótica de quinua, que combina el efecto de la hidrólisis enzimática de los almidones obtenidos de sus semillas con la fermentación láctica utilizando cultivos probióticos, buscando potenciar sus propiedades nutricionales y convertirla en una bebida funcional. Métodos: Para ello se realizaron fermentaciones en tres concentraciones diferentes de cultivos probióticos (inóculo): 10%, 5%, 1%, y tres distintos tiempos de fermentación: 8, 10 y 12 horas. Se midió pH, Acidez titulable total expresada como ácido láctico (%), azúcares reductores y sólidos solubles. Posteriormente, se formuló la bebida con miel, algarrobina, conservantes y saborizante de mango. Resultados: El análisis estadístico indicó que se lograron condiciones óptimas con 10% de cultivos probióticos y 10 horas de fermentación. El análisis microbiológico confirmó la presencia de microorganismos probióticos a una concentración de 108 UFC/mL. El análisis proximal indicó que la composición contenía 84,6 Kcal, 19,3 g de carbohidratos y 1,4 g de proteína por 100 g de bebida. Conclusiones: la bebida probiótica de quinua fue elaborada y puede ser considerada en el grupo de alimentos de origen vegetal, así como una bebida funcional, ya que los cultivos probióticos que contiene contribuyen al mantenimiento de la microbiota intestinal y previenen la aparición de enfermedades crónicas.


Subject(s)
Humans , Probiotics , Fermentation , Fermented Beverages , Hydrolysis
4.
Biosci. j. (Online) ; 39: e39004, 2023. tab
Article in English | LILACS | ID: biblio-1415866

ABSTRACT

Lysine is an essential amino acid that is not biologically manufactured in the body. Different chemical methods for lysine production are expensive and give low yields. The present study was conducted with the purpose to evaluate the biochemical production of lysine by different carbon sources using bacterial isolates. Three carbon sources namely glucose, sucrose, and fructose were used to evaluate the biochemical production of lysine by Escherichia coli and Klebsiella spp. isolates. Optimum incubation periods were between 48-96 hours. An extensive amount of lysine was produced by all of these isolates in L6 fermentation medium. Maximum lysine was produced by Klebsiella isolate K1 6.48 g/L after 96 hours of incubation by using glucose as carbon source followed by 6.0 g/L by Klebsiella isolates K3 after 72 hours of incubation when sucrose was used as a carbon source at 37 °C. Highest amount of lysine was produced at 96 hours by Klebsiella isolates in addition to E. coli. From all three carbon sources using Klebsiella isolates and E. coli, glucose showed better lysine production.


Subject(s)
Biochemical Phenomena , Fermentation , Lysine
5.
Chinese Journal of Biotechnology ; (12): 4621-4634, 2023.
Article in Chinese | WPRIM | ID: wpr-1008046

ABSTRACT

Sialyllactose is one of the most abundant sialylated oligosaccharides in human milk oligosaccharides (HMOs), which plays an important role in the healthy development of infants and young children. However, its efficient and cheap production technology is still lacking presently. This study developed a two-step process employing multiple-strains for the production of sialyllactose. In the first step, two engineered strains, E. coli JM109(DE3)/ pET28a-BT0453 and JM109(DE3)/pET28a-nanA, were constructed to synthesize the intermediate N-acetylneuraminic acid. When the ratio of the biomass of the two engineered strains was 1:1 and the reaction time was 32 hours, the maximum yield of N-acetylneuraminic acid was 20.4 g/L. In the second step, E. coli JM109(DE3)/ pET28a-neuA, JM109(DE3)/ pET28a-nst and Baker's yeast were added to the above fermentation broth to synthesize 3'-sialyllactose (3'-SL). Using optimal conditions including 200 mmol/L N-acetyl-glucosamine and lactose, 150 g/L Baker's yeast, 20 mmol/L Mg2+, the maximum yield of 3'-SL in the fermentation broth reached 55.04 g/L after 24 hours of fermentation and the conversion rate of the substrate N-acetyl-glucosamine was 43.47%. This research provides an alternative technical route for economical production of 3'-SL.


Subject(s)
Child , Humans , Child, Preschool , N-Acetylneuraminic Acid , Escherichia coli/genetics , Lactose , Fermentation , Saccharomyces cerevisiae , Oligosaccharides , Glucosamine
6.
Chinese Journal of Biotechnology ; (12): 3421-3435, 2023.
Article in Chinese | WPRIM | ID: wpr-1007967

ABSTRACT

Pullulanase is a starch debranching enzyme, which is difficult in secretory expression due to its large molecular weight. Vibrio natriegens is a novel expression host with excellent efficiency in protein synthesis. In this study, we achieved secretory expression of the full-length pullulanase PulA and its truncated mutant PulN2 using V. natriegens VnDX strain. Subsequently, we investigated the effects of signal peptide, fermentation temperature, inducer concentration, glycine concentration and fermentation time on the secretory expression. Moreover, the extracellular enzyme activities of the two pullulanases produced in V. natriegens VnDX and E. coli BL21(DE3) were compared. The highest extracellular enzyme activity of PulA and PulN2 in V. natriegens VnDX were 61.6 U/mL and 64.3 U/mL, which were 110% and 62% that of those in E. coli BL21(DE3), respectively. The results indicated that V. natriegens VnDX can be used for secretory expression of the full-length PulA with large molecular weight, which may provide a reference for the secretory expression of other large molecular weight proteins in V. natriegens VnDX.


Subject(s)
Escherichia coli/genetics , Fermentation , Vibrio/genetics
7.
Chinese Journal of Biotechnology ; (12): 3394-3405, 2023.
Article in Chinese | WPRIM | ID: wpr-1007965

ABSTRACT

As the precursor of polylactic acid (PLA), optically pure l-lactic acid production is attracting increasing attention. The accumulation of lactic acid during fermentation inhibits strain growth. Therefore, it is necessary to improve the acid tolerance of lactic acid producers. In this study, comparative transcriptomic analysis was performed to investigate the effects of transporters on lactic acid tolerance of Bacillus coagulans DSM1, which is an l-lactic acid producer. The genes with more than two-fold up-regulation in transcriptional profile were further verified using real-time PCR. The transcriptional levels of RS06895, RS10595, RS10595, RS00500, RS00500, RS10635 and RS10635 were enhanced during lactic acid fermentation. Strain overexpressing RS10595 exhibited a retarded cell growth and low lactic acid production at pH 6.0, but an improved lactic acid production at pH 4.6. This study may facilitate the investigation of the acid tolerance mechanism in B. coagulans DSM1, as well as the construction of efficient lactic acid producers.


Subject(s)
Bacillus coagulans/genetics , Lactic Acid , Cell Cycle , Cell Proliferation , Fermentation
8.
Chinese Journal of Biotechnology ; (12): 3379-3393, 2023.
Article in Chinese | WPRIM | ID: wpr-1007964

ABSTRACT

Tyrosol is a natural polyphenolic product that is widely used in chemical, pharmaceutical and food industries. Currently, the de novo synthesis of tyrosol by Escherichia coli suffers from issues such as low cell density and poor yield. Therefore, the phenylpyruvate decarboxylase mutant ARO10F138L/D218G obtained in our previous study was fused with an alcohol dehydrogenase from different microorganisms for fusion expression, and the optimal ARO10F138L/D218G-L-YahK produced 1.09 g/L tyrosol in shake flasks. In order to further improve tyrosol production, feaB, a key gene in the competing pathway of 4-hydroxyphenylacetic acid, was knocked out, and the resulted strain produced 1.26 g/L tyrosol with an increase of 21.15% compared to that of the control. To overcome the low cell density in tyrosol fermentation, the quorum-sensing circuit was used to dynamically regulate the tyrosol synthesis pathway, so as to alleviate the toxic effect of tyrosol on chassis cells and relieve the growth inhibition. Using this strategy, the yield of tyrosol was increased to 1.74 g/L, a 33.82% increase. In a 2 L fermenter, the production of tyrosol in the engineered strain TRFQ5 dynamically regulated by quorum-sensing reached 4.22 g/L with an OD600 of 42.88. Compared with those in the engineered strain TRF5 statically regulated by induced expression, the yield was increased by 38.58% and the OD600 was enhanced by 43.62%. The combination of blocking the competing pathway using gene knockout technology, and reducing the inhibitory effect of tyrosol toxicity on chassis cells through quorum-sensing dynamic regulation increased the production of tyrosol. This study may facilitate the biosynthesis of other chemicals with high toxicity.


Subject(s)
Escherichia coli/genetics , Biological Products , Bioreactors , Fermentation
9.
Chinese Journal of Biotechnology ; (12): 3095-3110, 2023.
Article in Chinese | WPRIM | ID: wpr-1007947

ABSTRACT

Tacrolimus (FK506) is a 23-membered macrolide with immunosuppressant activity that is widely used clinically for treating the rejection after organ transplantation. The research on tacrolimus production was mainly focused on biosynthesis methods, within which there are still some bottlenecks. This review summarizes the progress made in tacrolimus biosynthesis via modification of metabolic pathways and control of fermentation process, with the hope to address the technical bottlenecks for tacrolimus biosynthesis and improve tacrolimus production by fermentation engineering and metabolic engineering.


Subject(s)
Tacrolimus , Immunosuppressive Agents , Fermentation , Macrolides , Anti-Bacterial Agents
10.
China Journal of Chinese Materia Medica ; (24): 2699-2712, 2023.
Article in Chinese | WPRIM | ID: wpr-981373

ABSTRACT

Fermented Chinese medicine has long been used. Amid the advance for preservation of experience, the connotation of fermented Chinese medicine has been enriched and improved. However, fermented Chinese medicine prescriptions generally contain a lot of medicinals. The fermentation process is complicated and the conventional fermentation conditions fail to be strictly controlled. In addition, the judgment of the fermentation end point is highly subjective. As a result, quality of fermented Chinese medicine is of great difference among regions and unstable. At the moment, the quality standards of fermented Chinese medicine are generally outdated and different among regions, with simple quality control methods and lacking objective safe fermentation-specific evaluation indictors. It is difficult to comprehensively evaluate and control the quality of fermented medicine. These problems have aroused concern in the industry and also affected the clinical application of fermented Chinese medicine. This article summarized and analyzed the application, quality standards, and the modernization of fermentation technology and quality control methods of fermented Chinese medicine and proposed suggestions for improving the quality standards of the medicine, with a view to improving the overall quality of it.


Subject(s)
Medicine, Chinese Traditional , Reference Standards , Quality Control , Fermentation
11.
China Journal of Chinese Materia Medica ; (24): 2146-2159, 2023.
Article in Chinese | WPRIM | ID: wpr-981346

ABSTRACT

On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.


Subject(s)
Rats , Animals , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Cholesterol, LDL , Fermentation , Aquaporin 2/metabolism , Lipid Metabolism , Liver , Lipids , Hyperlipidemias/genetics , Adenosine Triphosphate/pharmacology , Diet, High-Fat/adverse effects
12.
Chinese Journal of Biotechnology ; (12): 2410-2429, 2023.
Article in Chinese | WPRIM | ID: wpr-981209

ABSTRACT

The current linear economy model relies on fossil energy and increases CO2 emissions, which contributes to global warming and environmental pollution. Therefore, there is an urgent need to develop and deploy technologies for carbon capture and utilization to establish a circular economy. The use of acetogens for C1-gas (CO and CO2) conversion is a promising technology due to high metabolic flexibility, product selectivity, and diversity of the products including chemicals and fuels. This review focuses on the physiological and metabolic mechanisms, genetic and metabolic engineering modifications, fermentation process optimization, and carbon atom economy in the process of C1-gas conversion by acetogens, with the aim to facilitate the industrial scale-up and carbon negative production through acetogen gas fermentation.


Subject(s)
Fermentation , Gases/metabolism , Carbon Dioxide/metabolism , Metabolic Engineering , Carbon/metabolism
13.
Chinese Journal of Biotechnology ; (12): 2375-2389, 2023.
Article in Chinese | WPRIM | ID: wpr-981207

ABSTRACT

Adipic acid is a high-value-added dicarboxylic acid which is primarily used in the production of nylon-66 for manufacturing polyurethane foam and polyester resins. At present, the biosynthesis of adipic acid is hampered by its low production efficiency. By introducing the key enzymes of adipic acid reverse degradation pathway into a succinic acid overproducing strain Escherichia coli FMME N-2, an engineered E. coli JL00 capable of producing 0.34 g/L adipic acid was constructed. Subsequently, the expression level of the rate-limiting enzyme was optimized and the adipic acid titer in shake-flask fermentation increased to 0.87 g/L. Moreover, the supply of precursors was balanced by a combinatorial strategy consisting of deletion of sucD, over-expression of acs, and mutation of lpd, and the adipic acid titer of the resulting E. coli JL12 increased to 1.51 g/L. Finally, the fermentation process was optimized in a 5 L fermenter. After 72 h fed-batch fermentation, adipic acid titer reached 22.3 g/L with a yield of 0.25 g/g and a productivity of 0.31 g/(L·h). This work may serve as a technical reference for the biosynthesis of various dicarboxylic acids.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering , Bioreactors , Fermentation , Adipates/metabolism
14.
Chinese Journal of Biotechnology ; (12): 2248-2264, 2023.
Article in Chinese | WPRIM | ID: wpr-981201

ABSTRACT

S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.


Subject(s)
S-Adenosylmethionine/metabolism , Plant Breeding , Fermentation , Metabolic Engineering
15.
Chinese Journal of Biotechnology ; (12): 2231-2247, 2023.
Article in Chinese | WPRIM | ID: wpr-981200

ABSTRACT

Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.


Subject(s)
Saccharomyces cerevisiae/metabolism , Organic Chemicals , Carboxylic Acids/metabolism , Metabolic Engineering , Fermentation , Acids
16.
Chinese Journal of Biotechnology ; (12): 2070-2080, 2023.
Article in Chinese | WPRIM | ID: wpr-981190

ABSTRACT

5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6-aminohexanoate. By combinatory expression of L-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from L-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.


Subject(s)
Nylons , Lysine/metabolism , Hydrogen Peroxide/metabolism , Metabolic Engineering , Plastics/metabolism , Fermentation , Escherichia coli/metabolism , Aminocaproates/metabolism
17.
China Journal of Chinese Materia Medica ; (24): 596-607, 2023.
Article in Chinese | WPRIM | ID: wpr-970528

ABSTRACT

The tight relationships between microbiome and traditional Chinese medicine(TCM)have been widely recognized. New technologies, results, and theories are emerging in the field of microbiomics in recent years with the advances in high-throughput sequencing and multi-omics technologies. Based on the previous research, the present study has proposed the concept of TCM microbiomics(TCMM), which is an interdisciplinary subject aiming at elucidating the functions and applications of microbiome in the areas of herb resources, herb processing, herb storage, and clinical effects by using modern technology of biology, ecology, and informatics. This subject essentially contains the structures, functions, interactions, molecular mechanisms, and application strategies of the microbiome associated with the quality, safety, and efficacy of TCM. Firstly, the development of the TCMM concept was summarized, with the profound understanding of TCMM on the complexity and entirety of microbiome being emphasized. Then, the research contents and applications of TCMM in promoting the sustainable development of herb resources, improving the standardization and diversification of herb fermentation, strengthening the safety of herb storage, and resolving the scientific connotation of theories and clinical efficacy of TCM are reviewed. Finally, the research strategies and methods of TCM microbiomics were elaborated from basic research, application research, and system research. TCMM is expected to promote the integrative development of TCM with frontier science and technology, thereby expanding the depth and scope of TCM study and facilitating TCM modernization.


Subject(s)
Ecology , Fermentation , High-Throughput Nucleotide Sequencing , Medicine, Chinese Traditional , Research Design
18.
Chinese Journal of Biotechnology ; (12): 1119-1130, 2023.
Article in Chinese | WPRIM | ID: wpr-970427

ABSTRACT

Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.


Subject(s)
Gene Deletion , Bacillus amyloliquefaciens/metabolism , Aminolevulinic Acid/metabolism , Heme/metabolism , Fermentation
19.
Chinese Journal of Biotechnology ; (12): 1083-1095, 2023.
Article in Chinese | WPRIM | ID: wpr-970424

ABSTRACT

Biorefinery of chemicals from straw is an effective approach to alleviate the environmental pollution caused by straw burning. In this paper, we prepared gellan gum immobilized Lactobacillus bulgaricus T15 gel beads (LA-GAGR-T15 gel beads), characterized their properties, and established a continuous cell recycle fermentation process for D-lactate (D-LA) production using the LA-GAGR-T15 gel beads. The fracture stress of LA-GAGR-T15 gel beads was (91.68±0.11) kPa, which was 125.12% higher than that of the calcium alginate immobilized T15 gel beads (calcium alginate-T15 gel beads). This indicated that the strength of LA-GAGR-T15 gel beads was stronger, and the strain was less likely to leak out. The average D-LA production was (72.90±2.79) g/L after fermentation for ten recycles (720 h) using LA-GAGR-T15 gel beads as the starting strain and glucose as the substrate, which was 33.85% higher than that of calcium alginate-T15 gel beads and 37.70% higher than that of free T15. Subsequently, glucose was replaced by enzymatically hydrolyzed corn straw and fermented for ten recycles (240 h) using LA-GAGR-T15 gel beads. The yield of D-LA reached (1.74±0.79) g/(L·h), which was much higher than that of using free bacteria. The wear rate of gel beads was less than 5% after ten recycles, which indicated that LA-GAGR is a good carrier for cell immobilization and can be widely used in industrial fermentation. This study provides basic data for the industrial production of D-LA using cell-recycled fermentation, and provides a new way for the biorefinery of D-LA from corn straw.


Subject(s)
Fermentation , Lactobacillus delbrueckii , Zea mays , Lactic Acid , Alginates/chemistry , Glucose
20.
Chinese Journal of Biotechnology ; (12): 1070-1082, 2023.
Article in Chinese | WPRIM | ID: wpr-970423

ABSTRACT

The aim of this study was to develop a technical system for high-efficient production of fucoxanthin by photo-fermentation of Phaeodactylum tricornutum. In a 5 L photo-fermentation tank, the effects of initial light intensity, nitrogen source and concentration as well as light quality on biomass concentration and fucoxanthin accumulation in P. tricornutum were investigated systematically under mixotrophic condition. The results showed that the biomass concentration, fucoxanthin content and productivity reached the highest level of 3.80 g/L, 13.44 mg/g and 4.70 mg/(L·d) under the optimal conditions of initial light intensity of 100 μmol/(m2·s), 0.02 mol TN/L of tryptone: urea (1:1, N mol/N mol) as mixed nitrogen source, and a mixed red/blue (R: B=6:1) light, 1.41, 1.33 and 2.05-fold higher than that before optimization, respectively. This study developed a key technology for enhancing the production of fucoxanthin by photo-fermentation of P. tricornutum, facilitating the development of marine natural products.


Subject(s)
Fermentation , Xanthophylls , Light , Diatoms , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL