Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Journal of Southern Medical University ; (12): 1145-1154, 2023.
Article in Chinese | WPRIM | ID: wpr-987031

ABSTRACT

OBJECTIVE@#To investigate the protective effects of total saponins from Panax japonicus (TSPJ) against high-fat dietinduced testicular Sertoli cell junction damage in mice.@*METHODS@#Forty male C57BL/6J mice were randomized into normal diet group, high-fat diet group, and low-dose (25 mg/kg) and high-dose (75 mg/kg) TSPJ treatment groups (n=10). The mice in the normal diet group were fed a normal diet, while the mice in the other groups were fed a high-fat diet. After TSPJ treatment via intragastric administration for 5 months, the testes and epididymis of the mice were collected for measurement of weight, testicular and epididymal indices and sperm parameters. HE staining was used for histological evaluation of the testicular tissues and measurement of seminiferous tubule diameter and seminiferous epithelium height. The expression levels of ZO-1, occludin, claudin11, N-cadherin, E-cadherin and β-catenin in Sertoli cells were detected with Western blot, and the localization and expression levels of ZO-1 and β-catenin in the testicular tissues were detected with immunofluorescence assay. The protein expressions of LC3B, p-AKT and p-mTOR in testicular Sertoli cells were detected using double immunofluorescence assay.@*RESULTS@#Treatment with TSPJ significantly improved high-fat diet-induced testicular dysfunction by reducing body weight (P < 0.001), increasing testicular and epididymal indices (P < 0.05), and improving sperm concentration and sperm viability (P < 0.05). TSPJ ameliorated testicular pathologies and increased seminiferous epithelium height of the mice with high-fat diet feeding (P < 0.05) without affecting the seminiferous tubule diameter. TSPJ significantly increased the expression levels of ZO-1, occludin, N-cadherin, E-cadherin and β-catenin (P < 0.05) but did not affect claudin11 expression in the testicular tissues. Immunofluorescence assay showed that TSPJ significantly increased ZO-1 and β-catenin expression in the testicular tissues (P < 0.001), downregulated LC3B expression and upregulated p-AKT and p-mTOR expressions in testicular Sertoli cells.@*CONCLUSION@#TSPJ alleviates high-fat diet-induced damages of testicular Sertoli cell junctions and spermatogenesis possibly by activating the AKT/mTOR signaling pathway and inhibiting autophagy of testicular Sertoli cells.


Subject(s)
Male , Animals , Mice , Mice, Inbred C57BL , Testis , Sertoli Cells , beta Catenin , Diet, High-Fat , Occludin , Proto-Oncogene Proteins c-akt , Seeds , Cadherins , Intercellular Junctions
2.
Chinese journal of integrative medicine ; (12): 809-817, 2023.
Article in English | WPRIM | ID: wpr-1010273

ABSTRACT

OBJECTIVE@#To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC).@*METHODS@#A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot.@*RESULTS@#Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01).@*CONCLUSION@#ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.


Subject(s)
Mice , Animals , Sirtuin 1/genetics , Antioxidants , Occludin , Lipopolysaccharides , Claudin-1 , Mannose , Mice, Inbred C57BL , Constipation/drug therapy , Inflammation , Signal Transduction
3.
China Journal of Chinese Materia Medica ; (24): 525-533, 2023.
Article in Chinese | WPRIM | ID: wpr-970489

ABSTRACT

This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.


Subject(s)
Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Diabetes Mellitus, Type 2/metabolism , Occludin/pharmacology , Claudin-1/metabolism , Intestinal Mucosa , Liver , Triglycerides/metabolism , Diet, High-Fat , Homeostasis , Mice, Inbred C57BL
4.
Journal of Southern Medical University ; (12): 323-330, 2023.
Article in Chinese | WPRIM | ID: wpr-971532

ABSTRACT

OBJECTIVE@#To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.@*METHODS@#A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.@*RESULTS@#The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).@*CONCLUSION@#SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Matrix Metalloproteinase 9/metabolism , Glycine max/metabolism , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ferroptosis , Blood-Brain Barrier/ultrastructure , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion Injury/metabolism , Isoflavones/therapeutic use , Infarction, Middle Cerebral Artery
5.
Journal of Southern Medical University ; (12): 287-293, 2023.
Article in Chinese | WPRIM | ID: wpr-971527

ABSTRACT

OBJECTIVE@#To explore the molecular mechanisms of Porphyromonas gingivalis infection-induced umbilical vein endothelial barrier dysfunction in vitro.@*METHODS@#Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and after the formation of the endothelial barrier, the cells were infected with P. gingivals at a multiplicity of infection (MOI). The transepithelial electrical resistance (TEER) of the cell barrier was measured, and FITC-dextran trans-endothelial permeability assay and bacterial translocation assay were performed to assess the endothelial barrier function. The expression levels of cell junction proteins including ZO-1, occludin and VE-cadherin in the cells were examined by qRT-PCR and Western blotting.@*RESULTS@#In freshly seeded HUVECs, TEER increased until reaching the maximum on Day 5 (94 Ωcm2), suggesting the formation of the endothelial barrier. P. gingivals infection caused an increase of the permeability of the endothelial barrier as early as 0.5 h after bacterial inoculation, and the barrier function further exacerbated with time, as shown by significantly lowered TEER, increased permeability of FITC-dextran (40 000/70 000), and increased translocation of SYTO9-E. coli cross the barrier. MTT assay suggested that P. gingivals infection did not significantly affect the proliferation of HUVECs (P>0.05), but in P. gingivalsinfected cells, the expressions of ZO-1, occludin and VE-cadherin increased significantly at 24 and 48 h after bacterial inoculation (P < 0.05).@*CONCLUSION@#P. gingivals may disrupt the endothelial barrier function by down-regulating the expressions of the cell junction proteins (ZO-1, occludin, VE-cadherin) and increasing the permeability of the endothelial barrier.


Subject(s)
Humans , Cadherins/metabolism , Escherichia coli/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Occludin , Porphyromonas gingivalis/metabolism , Umbilical Veins/metabolism
6.
Chinese journal of integrative medicine ; (12): 155-161, 2023.
Article in English | WPRIM | ID: wpr-971335

ABSTRACT

OBJECTIVE@#To explore the mechanisms of Buyang Huanwu Decoction (BYHWD) modulating the gut microbiome and trimethylamine oxide (TAMO) to exert cardioprotective effects.@*METHODS@#Ligation of the left anterior descending coronary artery was performed in rats to induce heart failure (HF). Except for the sham-operation group (n=10), 36 operation-induced models were randomized into 3 groups using a random number table (n=12 in each group): the model group, the BYHWD group (15.02 g/kg BYHWD), and the positive group (4.99 g/kg metoprolol succinate). After 4-week treatment (once daily by gavage), echocardiography was applied to evaluate the cardiac function and the Tei index (the ratio of ventricular isovolumic contraction time (IVCT) and isovolumic diastolic time (IVRT) to ejection time (ET)) was calculated; hematoxylin-eosin (HE) staining was observed to characterize the pathology of the myocardium and small intestinal villi. D-lactic acid was detected by an enzyme-linked immunosorbent assay (ELISA). Expressions of occludin, claudin-1, and zonula occludens (ZO-1) were detected by Western blot. 16S ribosomal ribonucleic acid (16S rRNA) sequencing was used to explore the changes in the intestinal flora. TMAO was detected via liquid chromatography-tandem mass spectrometry (LC-MS/MS).@*RESULTS@#In the echocardiography, the Tei index was considerably lower in the positive and BYHWD groups compared with the model group (P<0.05). Besides, BYHWD improved the pathology of myocardium and small intestine of HF rats and lowered the D-lactic acid content in the serum, when compared with the model group (P<0.05). BYHWD also improved the expression of occludin and claudin-1 (P<0.05); in the gut microbiota analysis, BYHWD slowed down modifications in the structure distribution of gut microbiota and regulated the diversity of intestinal flora in HF rats. The content of TMAO in the serum was significantly lowered by BYWHT compared with the model group (P<0.05).@*CONCLUSION@#BYHWD may delay progression of HF by enhancing the intestinal barrier structure, and regulating intestinal flora and TAMO.


Subject(s)
Rats , Animals , Rats, Sprague-Dawley , Gastrointestinal Microbiome , Chromatography, Liquid , Claudin-1 , Occludin , RNA, Ribosomal, 16S , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Heart Failure
7.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 2-7, 2023.
Article in Chinese | WPRIM | ID: wpr-970702

ABSTRACT

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Subject(s)
Rats , Animals , Matrix Metalloproteinase 9/metabolism , NF-E2-Related Factor 2/metabolism , Tight Junction Proteins/metabolism , Occludin/pharmacology , Choroid Plexus/metabolism , Reactive Oxygen Species/metabolism , Lanthanum/pharmacology , Epithelial Cells , Zonula Occludens-1 Protein/metabolism , Phosphoproteins/pharmacology
8.
Journal of Central South University(Medical Sciences) ; (12): 648-662, 2023.
Article in English | WPRIM | ID: wpr-982334

ABSTRACT

OBJECTIVES@#Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).@*METHODS@#Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.@*RESULTS@#The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.@*CONCLUSIONS@#Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.


Subject(s)
Animals , Rats , Blood-Brain Barrier/metabolism , Brain Ischemia , Claudin-5/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/metabolism , Occludin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Reperfusion Injury/metabolism
9.
Journal of Central South University(Medical Sciences) ; (12): 717-729, 2022.
Article in English | WPRIM | ID: wpr-939804

ABSTRACT

OBJECTIVES@#Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization.@*METHODS@#A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia.@*RESULTS@#1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups.@*CONCLUSIONS@#After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents/therapeutic use , Cerebral Hemorrhage , Cytokines/metabolism , Interleukin-4/therapeutic use , Interleukin-6/metabolism , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Occludin/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics
10.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 161-169, 2022.
Article in Chinese | WPRIM | ID: wpr-935768

ABSTRACT

Objective: To observe the intestinal time-dependent changes in Parkinson's disease (PD) mouse model constructed by intraperitoneal injection of paraquat (PQ) and to establish the brain-gut axis connection initially. Methods: In October 2019, 48 mice were randomly divided into treated group and control groups: treated 4-week (P-4) group, treated 6-week (P-6) group, treated 8-week (P-8) group, control 4-week (C-4) group, control 6-week (C-6) group, and control 8-week (C-8) group. The treated group was injected with 15 mg/kg PQ solution and the control group was injected with 0.9% saline (0.2 ml/20 g) by intraperitoneal injection twice a week. After the initial state (0 weeks) and the treatment at the end of 4, 6 and 8 weeks, the mood changes and motor functions of mice were assessed by neurobehavioral tests (open field test, pole climbing test, tail suspension test and elevated plus maze test) . And the number of fecal pellets for 1 h and water content were calculated to assess the functional status of the gastrointestinal tract. Western blotting experiments were performed to detect the expression levels of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in the nigrostriatal region of the mouse brain, the tight junction markers zonula occludens-1 (ZO-1) and Occludin, the inflammatory markers of integrin αM subunit (CD11b) , inducible nitric oxide synthase (iNOS) , high mobility group box 1 (HMGB1) , interleukin-1β (IL-1β) , and the neuronal markers βⅢ-tubulin and α-syn protein in the colon.Immunohistochemical staining was performed to detect the expression levels of colonic tight junction proteins ZO-1 and Occludin. Immunofluorescence staining was performed to detect the expression levels of TH in the substantia nigra region of the midbrain, and the co-localization of colonic intestine neuronal marker (βⅢ-tubulin) and Ser129 α-syn in the colonic. Results: Compared with the initial state (0 weeks) and C-8 group, mice in the P-8 group had significantly higher pole climbing test scores and resting time, and significantly lower total active distance, mean active speed, percentage of open arm entry and 1 h fecal instances (P<0.05) . After poisoning, the 1 h fecal water content of model mice first increased and then decreased, the P-4 and P-6 groups were significantly higher than the simultaneous point control group, and the P-8 groups were significantly lower than the initial state (P<0.05) . Compared with control, P-4 and P-6 groups, the expression levels of ZO-1 and Occludin in the P-8 group were significantly decreased (P<0.05) . Compared with control group, the expression levels of CD11b and IL-1β in the P-4 group were significantly increased (P<0.05) . Compared with control and P-4 group, the expression levels of CD11b, iNOS, HMGB1 and IL-1β in the P-6 and P-8 groups were significantly increased (P<0.05) . Compared with the control and P-4 groups, the expression levels of βⅢ-tubulin in the colon of mice in the P-8 group were significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased (P<0.05) . The expression level of Ser129 α-syn in the colon of model mice was negatively correlated with the expression level of βⅢ-tubulin (r(s)=-0.9149, 95%CI: -0.9771--0.7085, P<0.001) . Ser129 α-syn and βⅢ-tubulin co-localization in the colonic intermuscular plexus region increased gradually with the time of exposure. Compared with the control, P-4 and P-6 groups, the expression level of TH in the nigrostriatal region of the brain was significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased in the P-8 group (P<0.05) . Correlation analysis showed that the relative expression level of Ser129 α-syn in the nigrostriatal region of the brain was negatively correlated with the expression level of TH in the model mice (r(s)=-0.9716, 95% CI: -0.9925--0.8953, P<0.001) . Conclusion: The PD mouse model is successfully established by PQ, and the intestinal function of the model mice is reduced in a time-dependent manner. And on this basis, it is preliminary determined that the abnormal aggregation of α-syn may be an important substance connecting the brain-gut axis.


Subject(s)
Animals , Mice , Brain-Gut Axis , Disease Models, Animal , HMGB1 Protein , Intestines , Mice, Inbred C57BL , Occludin , Paraquat/toxicity , Parkinson Disease , Tubulin , Tyrosine 3-Monooxygenase/metabolism , Water
11.
Acta Physiologica Sinica ; (6): 931-939, 2021.
Article in Chinese | WPRIM | ID: wpr-921298

ABSTRACT

Endothelial tight junctions (TJs) serve as an important barrier in vascular endothelial structure and maintain vascular function homeostasis. Occludin, the most representative tight junction protein, is involved in sealing cell connections and maintaining the integrity and permeability of vascular endothelium. Recent studies have shown that alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies (such as stroke, atherosclerosis, and pulmonary hypertension etc.). Here, we reviewed the research advances on the relationship between occludin and vascular endothelial injury, including the biological information of occludin, the signal pathways that occludin exerts the protective effect of vascular endothelium, and the relationship between occludin and vascular endothelial injury-related diseases.


Subject(s)
Endothelium, Vascular , Occludin/genetics , Signal Transduction , Tight Junctions
12.
Allergy, Asthma & Immunology Research ; : 56-71, 2020.
Article in English | WPRIM | ID: wpr-762183

ABSTRACT

PURPOSE: The effect of air pollution-related particulate matter (PM) on epithelial barrier function and tight junction (TJ) expression in human nasal mucosa has not been studied to date. This study therefore aimed to assess the direct impact of PM with an aerodynamic diameter less than 2.5 μm (PM2.5) on the barrier function and TJ molecular expression of human nasal epithelial cells. METHODS: Air-liquid interface cultures were established with epithelial cells derived from noninflammatory nasal mucosal tissue collected from patients undergoing paranasal sinus surgery. Confluent cultures were exposed to 50 or 100 µg/mL PM2.5 for up to 72 hours, and assessed for 1) epithelial barrier integrity as measured by transepithelial resistance (TER) and permeability of fluorescein isothiocyanate (FITC) 4 kDa; 2) expression of TJs using real-time quantitative polymerase chain reaction and immunofluorescence staining, and 3) proinflammatory cytokines by luminometric bead array or enzyme-linked immunosorbent assay. RESULTS: Compared to control medium, 50 and/or 100 µg/mL PM2.5-treatment 1) significantly decreased TER and increased FITC permeability, which could not be restored by budesonide pretreatment; 2) significantly decreased the expression of claudin-1 messenger RNA, claudin-1, occludin and ZO-1 protein; and 3) significantly increased production of the cytokines interleukin-8, TIMP metallopeptidase inhibitor 1 and thymic stromal lymphopoietin. CONCLUSIONS: Exposure to PM2.5 may lead to loss of barrier function in human nasal epithelium through decreased expression of TJ proteins and increased release of proinflammatory cytokines. These results suggest an important mechanism of susceptibility to rhinitis and rhinosinusitis in highly PM2.5-polluted areas.


Subject(s)
Humans , Asthma , Budesonide , Claudin-1 , Cytokines , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Fluorescein , Fluorescein-5-isothiocyanate , Fluorescent Antibody Technique , Interleukin-8 , Mucous Membrane , Nasal Mucosa , Occludin , Particulate Matter , Permeability , Polymerase Chain Reaction , Rhinitis , RNA, Messenger , Tight Junctions
13.
Biol. Res ; 53: 12, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100918

ABSTRACT

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Subject(s)
Humans , Animals , Cattle , MicroRNAs/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Mast Cells/metabolism , Permeability , Inflammatory Bowel Diseases/metabolism , Cells, Cultured , Caco-2 Cells/cytology , Computational Biology , Tissue Array Analysis , Exosomes/metabolism , Claudins/metabolism , Occludin/metabolism , Zonula Occludens-1 Protein/metabolism
14.
Experimental Neurobiology ; : 216-228, 2019.
Article in English | WPRIM | ID: wpr-739543

ABSTRACT

The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.


Subject(s)
Blood-Brain Barrier , Blotting, Western , Brain Ischemia , Brain , Caspase 3 , Cell Death , Complement C3a , Complement System Proteins , Encephalitis , Endothelial Cells , Glucose , Immunity, Innate , Immunohistochemistry , In Situ Nick-End Labeling , In Vitro Techniques , Inflammation , Ischemia , Neurons , Occludin , Oxidative Stress , Phosphorylation , Reperfusion , Stroke , Tight Junctions
15.
Acta Academiae Medicinae Sinicae ; (6): 506-511, 2019.
Article in Chinese | WPRIM | ID: wpr-776003

ABSTRACT

To investigate the expressions of mucosal barrier proteins in colon cell line DLD-1 under hypoxic environment and its mechanism. Methods After DLD-1 cells were treated separately with hypoxia(l% O),vitamin D(100 nmol/L),or vitamin D plus hypoxia for 48 hours,the expressions of vitamin D receptor(VDR),tight junction proteins zonula occludens-1(ZO-1),occludin,Claudin-1,and adherent junction protein(E-cadherin)were determined by Western blot.Stable VDR knock-down(Sh-VDR)DLD-1 cell line and control DLD-1 cell line were established by lentivirus package technology and the protein expressions after hypoxia treatment were detected. Results Compared with control group,the expressions of occludin,Claudin-1,and VDR increased significantly after hypoxia treatment(all <0.001).In addition to the protein expressions of occludin,Claudin-1 and VDR,the expressions of ZO-1 and E-cadherin were also obviously higher in vitamin D plus hypoxia group than in single vitamin D treatment group(all <0.001).After hypoxia treatment,Sh-VDR cell line showed significantly decreased expressions of ZO-1(<0.001),occludin(<0.05),Claudin-1(<0.01)and E-cadherin(<0.001)when compared with untreated Sh-VDR cell line. Conclusion VDR acts as a regulator for the expressions of intestinal mucosal barrier proteins under hypoxia environment in DLD-1 colon cell line,indicating that VDR pathway may be another important protective mechanism for gut barrier in low-oxygen environment.


Subject(s)
Humans , Antigens, CD , Metabolism , Cadherins , Metabolism , Cell Hypoxia , Cell Line , Claudin-1 , Metabolism , Colon , Cell Biology , Occludin , Metabolism , Receptors, Calcitriol , Metabolism , Tight Junctions , Vitamin D , Pharmacology , Zonula Occludens-1 Protein , Metabolism
16.
Journal of the Korean Ophthalmological Society ; : 252-260, 2018.
Article in Korean | WPRIM | ID: wpr-738520

ABSTRACT

PURPOSE: To investigate the effects of high glucose (HG) and dexamethasone (DEX) on the survival and permeability of trabecular meshwork cells (HTMC), and associated changes in tight junctions. METHODS: Primary cultured HTMC were exposed to 5 mM low glucose (LG) or 25 mM HG with or without 1.0 µM DEX for 3 days. The permeability of the HTMC monolayer was assessed using carboxyfluorescein or transendothelial electrical resistance (TEER). Gene and protein expressions of claudin-5 and occludin were assessed with reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. RESULTS: HG was significantly associated with greater HTMC monolayer permeability compared to LG by both the carboxyfluorescein permeability test and TEER (p = 0.022, 0.028). HG also decreased claudin-5 and occludin mRNA expression, respectively (7.5%, 12.9%). DEX abolished HG-induced increased permeability, and increased the protein expression of claudin-5 and occludin, respectively (p = 0.015, 0.012). CONCLUSIONS: In HTMCs, DEX reversed HG-induced permeability increase. DEX increased tight junction molecules claudin-5 and occludin. Thus, DEX-induced changes in junctional proteins could be another mechanism of increased resistance through the trabecular meshwork and may result in steroid-induced glaucoma.


Subject(s)
Blotting, Western , Claudin-5 , Dexamethasone , Electric Impedance , Glaucoma , Glucose , Occludin , Permeability , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Tight Junctions , Trabecular Meshwork
17.
Gut and Liver ; : 682-693, 2018.
Article in English | WPRIM | ID: wpr-718118

ABSTRACT

BACKGROUND/AIMS: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. METHODS: The effects of 17β-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. RESULTS: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p < 0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-κB, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. CONCLUSIONS: E2 acts through the estrogen receptor β signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.


Subject(s)
Animals , Humans , Male , Mice , Azoxymethane , Blotting, Western , Claudin-4 , Colitis , Colitis, Ulcerative , Colon , Colonic Neoplasms , Cytokines , Enzyme-Linked Immunosorbent Assay , Eosine Yellowish-(YS) , Epithelial Cells , Estradiol , Estrogens , Hematoxylin , Inflammation , Inflammatory Bowel Diseases , Mucin-2 , Mucin-4 , Occludin , Permeability , Peroxidase , Real-Time Polymerase Chain Reaction , RNA, Messenger , Sodium , Tight Junctions
18.
Gut and Liver ; : 411-419, 2018.
Article in English | WPRIM | ID: wpr-715591

ABSTRACT

BACKGROUND/AIMS: Male predominance has been observed in the erosive reflux disease (ERD), but reverse finding in nonerosive reflux disease (NERD). This suggests sex-specific medicine approach is needed but its mechanism is remained to be elucidated. We aimed to compare clinical characteristics and mRNA expression levels of tight junction-related proteins between male and female gastroesophageal reflux disease (GERD). METHODS: Sixteen healthy controls, 45 ERD, and 14 NERD patients received upper endoscopies and completed questionnaires. Quantitative real-time polymerase chain reactions of occludin (OCLN), zonal occludens (ZO) 1, claudin-1 (CLDN1) and claudin-4 (CLDN4), and neurokinin 1 receptor (NK1R) were performed in the distal esophageal mucosal specimen. These results were analyzed by sex. RESULTS: Female GERD patients were affected more by reflux symptoms than males. The impairment of overall quality of life was more prominent in female patients with reflux symptoms than male patients (5.6±0.2 vs 4.9±0.6, p=0.009). The levels of OCLN mRNA expression were significantly lower in the male ERD group. On the other hand, those of CLDN1, CLDN4, and NK1R except ZO-1 were significantly higher in the male ERD group. CONCLUSIONS: We demonstrated that female ERD/NERD patients were affected more by GERD and male ERD patients showed significant changes of tight junction protein mRNA expression levels.


Subject(s)
Female , Humans , Male , Claudin-1 , Claudin-4 , Fluconazole , Gastroesophageal Reflux , Hand , Occludin , Polymerase Chain Reaction , Quality of Life , Receptors, Neurokinin-1 , RNA, Messenger , Tight Junction Proteins , Tight Junctions
19.
Korean Journal of Radiology ; : 498-507, 2018.
Article in English | WPRIM | ID: wpr-715441

ABSTRACT

OBJECTIVE: Whether blood-brain barrier (BBB) disruption induced by chronic spontaneous hypertension is associated with beta-amyloid (Aβ) accumulation in the brain remains poorly understood. The purpose of this study was to investigate the relationship between BBB disruption and Aβ influx and accumulation in the brain of aged rats with chronic spontaneous hypertension. MATERIALS AND METHODS: Five aged spontaneously hypertensive rats (SHRs) and five age-matched normotensive Wistar-Kyoto (WKY) rats were studied. The volume transfer constant (Ktrans) obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to evaluate BBB permeability in the hippocampus and cortex in vivo. The BBB tight junctions, immunoglobulin G (IgG), Aβ, and amyloid precursor protein (APP) in the hippocampus and cortex were examined with immunohistochemistry. RESULTS: As compared with WKY rats, the Ktrans values in the hippocampus and cortex of the SHRs increased remarkably (0.316 ± 0.027 min−1 vs. 0.084 ± 0.017 min−1, p < 0.001 for hippocampus; 0.302 ± 0.072 min−1 vs. 0.052 ± 0.047 min−1, p < 0.001 for cortex). Dramatic occludin and zonula occludens-1 losses were detected in the hippocampus and cortex of SHRs, and obvious IgG exudation was found there. Dramatic Aβ accumulation was found and limited to the area surrounding the BBB, without extension to other parenchyma regions in the hippocampus and cortex of aged SHRs. Alternatively, differences in APP expression in the hippocampus and cortex were not significant. CONCLUSION: Blood-brain barrier disruption is associated with Aβ influx and accumulation in the brain of aged rats with chronic spontaneous hypertension. DCE-MRI can be used as an effective method to investigated BBB damage.


Subject(s)
Animals , Rats , Alzheimer Disease , Amyloid , Blood-Brain Barrier , Brain , Hippocampus , Hypertension , Immunoglobulin G , Immunohistochemistry , Magnetic Resonance Imaging , Methods , Occludin , Permeability , Rats, Inbred SHR , Rats, Inbred WKY , Tight Junctions
20.
China Journal of Chinese Materia Medica ; (24): 4652-4658, 2018.
Article in Chinese | WPRIM | ID: wpr-771537

ABSTRACT

To study the effect of different processes of Crotonis Fructus on fatty oil, total protein and intestinal toxicity, three kinds of processed products (heat Crotonis Semen Pulveratum, non-heat Crotonis Semen Pulveratum and diluted Crotonis Semen Pulveratum) were prepared. Mice were orally given Crotonis Fructus. The content of DAO and D-lactic acid in the serum were measured by ELISA to investigate the change of intestinal permeability in mice. Western blot was used to determine the expressions of tight junction proteins (occludin, claudin-1) in different intestinal tract, so as to observe the effect of Crotonis Fructus and its processed products on intestinal epithelial barrier. These results showed that Crotonis Fructus could significantly increase the intestinal permeability and reduce the expression of tight junction proteins in duodenum and jejunum, but with little impact on the ileum and colon. The intestinal permeability and the expression of tight junction proteins became normal after processing. However, the order of the toxicity of Crotonis Semen Pulveratum from high to low was non-heat Crotonis Semen Pulveratum > diluted Crotonis Semen Pulveratum≈4heat Crotonis Semen Pulveratum. According to the results of composition, the composition of fatty oil did not change during the processing, but the content and composition of total protein in Crotonis Semen Pulveratum changed significantly. The order of total protein content from high to low was that non-heat Crotonis Semen Pulveratum > heat Crotonis Semen Pulveratum > diluted Crotonis Semen Pulveratum. The molecular weight distribution of the total protein bands of non-heat Crotonis Semen Pulveratum and diluted Crotonis Semen Pulveratum was consistent, but the composition of total protein of heat Crotonis Semen Pulveratum significantly changed as evidenced by decreased and thin some stripes. This indicated that heating and dilution could reduce the content of total protein, and heating could cause partial protein denaturation and inactivation. In conclusion, both dilution and heating can reduce the toxicity of Crotonis Fructus, but the heating shows a more significant attenuation effect, indicating that heating is the key step in Crotonis Semen Pulveratum preparation.


Subject(s)
Animals , Mice , Fruit , Ileum , Intestinal Mucosa , Intestines , Jejunum , Occludin , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL