Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
Sheng Li Xue Bao ; (6): 623-628, 2023.
Article in Chinese | WPRIM | ID: wpr-1007777

ABSTRACT

The study aims to explore the active molecules of traditional Chinese medicine that specifically bind to interleukin-15 receptor α (IL-15Rα) using molecular docking and surface plasmon resonance (SPR) technology. AutoDock molecular docking software was used to perform simulated docking of more than 3 000 compounds from 48 traditional Chinese medicines at IL-15Rα and screen the specific binding compounds. Then Biocore T200 biomolecular interaction analysis system of SPR was used to confirm the binding specificity of the selected target compounds. Finally, the biological effects of the target compounds on IL-15Rα were verified by cell biological experiments. The results showed that neoprzewaquinone A (Neo) possessed the highest specific binding affinity among the active molecules from traditional Chinese medicine, and the dissociation constant (KD) value was (0.62 ± 0.20) µmol/L. The results of cell experiment showed that Neo significantly inhibited the proliferation of Mo7e cells induced by IL-15, and the IC50 was 1.075 µmol/L, approximately 1/120 of the IC50 of Cefazolin (IL-15 specific antagonist). These results suggest that Neo is a specific inhibitor of IL-15Rα and may be a potential active drug for the treatment of diseases related to the dysfunction of the IL-15Rα signaling.


Subject(s)
Molecular Docking Simulation , Interleukin-15/pharmacology , Surface Plasmon Resonance , Interleukin-15 Receptor alpha Subunit/metabolism , Protein Binding
2.
Zhongguo Zhong Yao Za Zhi ; (24): 6183-6190, 2023.
Article in Chinese | WPRIM | ID: wpr-1008817

ABSTRACT

Traditional Chinese medicine(TCM) compound preparations have complex compositions. As a widely used TCM injection, Shuganning Injection, its in vivo processes are not yet fully understood. Determining the plasma protein binding rate is of great significance for pharmacokinetic and pharmacodynamic studies. In this experiment, the equilibrium dialysis method combined with UPLC-MS/MS technology was used to determine the plasma protein binding rates of 10 components, including p-hydroxyacetophenone, caffeic acid, baicalein, oroxylin A, geniposide, baicalin, cynaroside, oroxylin A-7-O-β-D-glucuronide, scutellarin, and hyperoside, in Shuganning Injection in rat and human plasma to provide a theoretical basis for further elucidating the in vivo processes of Shuganning Injection and guiding clinical medication. The results showed that, except for baicalein and geniposide, the plasma protein binding rates of the other eight components were higher in human plasma than in rat plasma, and there were interspecies differences. In human plasma, except for geniposide, caffeic acid, and baicalin, the plasma protein binding rates of the remaining seven components were above 80%, with baicalein and oroxylin A exceeding 90%. All components exhibit a high level of binding to plasma proteins, with the exception of geniposide.


Subject(s)
Rats , Humans , Animals , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Rats, Sprague-Dawley , Liquid Chromatography-Mass Spectrometry , Protein Binding , Renal Dialysis , Drugs, Chinese Herbal , Blood Proteins , Chromatography, High Pressure Liquid/methods
3.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 876-885, 2023.
Article in Chinese | WPRIM | ID: wpr-1008912

ABSTRACT

In resting platelets, the 17 th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563 rd phenylalanine (PHE 563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.


Subject(s)
Filamins/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Molecular Dynamics Simulation , Ligands , Protein Binding , Blood Platelets/metabolism , von Willebrand Factor/metabolism
4.
Article in Chinese | WPRIM | ID: wpr-928446

ABSTRACT

OBJECTIVE@#To characterize a novel HLA allele, A*24:191, its DNA sequence, MHC modeling structure, and the possible influence of the amino-acid residue variations on the molecule.@*METHODS@#The HLA sequence was determined by Luminex PCR-SSO and PCR-SBT. Its MHC molecular structure and the possible effects of the amino-acid residue variations were modeled and analyzed with Phyre2, RCSB PDB and HistoCheck software.@*RESULTS@#The PCR-SBT revealed the novel A*24:191 differs from A*24:02 in exon 2 at position 256, 265, 270 with G>C, G>C, A>T. The MHC molecular structure prediction showed that, compared with A*24:02, the 62nd residue of A*24:191 changed from the acidic E to a neutral Q, both with the side chain extending outside the α helix pointing forward the groove, (Risler's score, R=2), the 65th changed from the smaller neutral G extending inside the helix to a basic R with a long-chain extending upward outside the helix (R=52), and the 66th changed from the basic K to a neutral N both with a long side chain extending inside the groove (R=31). The above residues are located on the α helix of the α 1 domain which constituting the side wall of the peptide-binding groove. The DSS Score=3.85. From the surface image of the molecule, it can be clearly seen that the variations of the properties, sizes and configurations of the residues caused significant changes in the shape of the surface structure of the α helix.@*CONCLUSION@#It suggested that the residue variations are likely to change the peptide binding properties as well as the TCR and antibody binding characteristics of the molecule.


Subject(s)
Humans , Alleles , Amino Acid Sequence , HLA-A Antigens , Peptides , Protein Binding , Protein Conformation
5.
Protein & Cell ; (12): 29-38, 2021.
Article in English | WPRIM | ID: wpr-880916

ABSTRACT

Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.


Subject(s)
Humans , Male , Amino Acid Sequence , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Mutation , Prostate/pathology , Prostatic Neoplasms/pathology , Protein Binding , Protein Processing, Post-Translational , Receptors, Androgen/metabolism , Signal Transduction , Transcription, Genetic
6.
Chinese Journal of Biotechnology ; (12): 2614-2622, 2021.
Article in Chinese | WPRIM | ID: wpr-887827

ABSTRACT

Bacteriophages bind to the bacteria receptor through the receptor binding proteins (RBPs), a process that requires the involvement of complex atomic structures and conformational changes. In response to bacteriophage infection, bacteria have developed a variety of resistance mechanisms, while bacteriophages have also evolved multiple antagonistic mechanisms to escape host resistance. The exploration of the "adsorption-anti adsorption-escape process" between bacteriophages and bacteria helps us better understand the co-evolution process of bacteriophages and bacteria, which is important for the development of phage therapeutic technologies and phage-based biotechnologies. This review summarizes the bacteriophage adsorption related proteins, how bacteriophages escape host resistance based on the RBP alternations, and the recent progress of RBP-related biotechnologies.


Subject(s)
Bacteria , Bacteriophage Receptors , Bacteriophages/genetics , Carrier Proteins , Protein Binding
7.
Protein & Cell ; (12): 788-809, 2021.
Article in English | WPRIM | ID: wpr-922475

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.


Subject(s)
Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Liver Neoplasms/pathology , Mice, Inbred BALB C , Neoplasm Staging , Prognosis , Protein Binding , RNA, Small Interfering/metabolism , Survival Analysis , Tumor Burden , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/metabolism
8.
Article in Chinese | WPRIM | ID: wpr-828528

ABSTRACT

OBJECTIVE@#To investigate the effect of calmodulin (CaM) and its mutants on binding to voltage-gated Na channel isoleucine-glutamine domain (Na1.2 IQ).@*METHODS@#The cDNA of Na1.2 IQ was constructed by PCR technique, CaM mutants CaM, CaM and CaM were constructed with Quickchange site-directed mutagenesis kit (QIAGEN). The binding of Na1.2 IQ to CaM and CaM mutants under calcium and calcium free conditions were detected by pull-down assay.@*RESULTS@#Na1.2 IQ and CaM were bound to each other at different calcium concentrations, while GST alone did not bind to CaM. The binding affinity of CaM and Na1.2 IQ at [Ca]-free was greater than that at 100 nmol/L [Ca] ( < 0.05). In the absence of calcium, the binding amount of CaM wild-type to Na1.2 IQ was greater than that of its mutant, and the binding affinity of CaM to Na1.2 IQ was the weakest among the three mutants ( < 0.05).@*CONCLUSIONS@#The binding ability of CaM and CaM mutants to Na1.2 IQ is Ca-dependent. This study has revealed a new mechanism of Na1.2 regulated by CaM, which would be useful for the study of ion channel related diseases.


Subject(s)
Calcium , Metabolism , Calmodulin , Genetics , Metabolism , Mutation , Metabolism , Protein Binding , Genetics
9.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828583

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
10.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828747

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
11.
Chinese Journal of Biotechnology ; (12): 969-978, 2020.
Article in Chinese | WPRIM | ID: wpr-826879

ABSTRACT

Drugs targeting immune checkpoint are used for cancer treatment, but resistance to single drug may occur. Combination therapy blocking multiple checkpoints simultaneously can improve clinical outcome. Therefore, we designed a recombinant protein rPC to block multiple targets, which consists of extracellular domains of programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). The coding sequence was inserted into expression vector and stably transfected into HEK293 cells. The culture supernatant was collected and rPC was affinity-purified. Real-time quantitative PCR was used to evaluate the expression levels of ligands for PD-1 and CTLA-4 in several human cancer cell lines. The binding of rPC with cancer cells was examined by immunofluorescence cell staining, the influence of rPC on cancer cell growth was assayed by CCK-8. The results showed that rPC could be expressed and secreted by stably transfected HEK293 cells, the purified rPC could bind to lung cancer NCI-H226 cells which have high levels of ligands for PD-1 and CTLA-4, no direct impact on cancer cell growth could be observed by rPC treatment. The recombinant protein rPC can be functionally assayed further for developing novel immunotherapeutic drugs for cancer.


Subject(s)
Animals , Humans , CTLA-4 Antigen , Genetics , Cell Proliferation , HEK293 Cells , Lung Neoplasms , Metabolism , Programmed Cell Death 1 Receptor , Genetics , Protein Binding , Protein Domains , Genetics , Recombinant Fusion Proteins , Genetics , Metabolism
12.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-827018

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
13.
Chin. j. integr. med ; Chin. j. integr. med;(12): 663-669, 2020.
Article in English | WPRIM | ID: wpr-827077

ABSTRACT

OBJECTIVE@#To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.@*METHODS@#The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.@*RESULTS@#It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.@*CONCLUSIONS@#A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Subject(s)
Humans , China , Computer Simulation , Coronavirus Infections , Diagnosis , Drug Therapy , Drug Repositioning , Methods , Drugs, Chinese Herbal , Pharmacology , Glycoproteins , Metabolism , Imaging, Three-Dimensional , Mass Screening , Methods , Molecular Docking Simulation , Methods , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral , Diagnosis , Drug Therapy , Protein Binding , United States , United States Food and Drug Administration
14.
Chin. j. integr. med ; Chin. j. integr. med;(12): 663-669, 2020.
Article in English | WPRIM | ID: wpr-827439

ABSTRACT

OBJECTIVE@#To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.@*METHODS@#The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.@*RESULTS@#It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.@*CONCLUSIONS@#A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Subject(s)
Humans , China , Computer Simulation , Coronavirus Infections , Diagnosis , Drug Therapy , Drug Repositioning , Methods , Drugs, Chinese Herbal , Pharmacology , Glycoproteins , Metabolism , Imaging, Three-Dimensional , Mass Screening , Methods , Molecular Docking Simulation , Methods , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral , Diagnosis , Drug Therapy , Protein Binding , United States , United States Food and Drug Administration
15.
Chin. med. j ; Chin. med. j;(24): 73-80, 2020.
Article in English | WPRIM | ID: wpr-877994

ABSTRACT

BACKGROUND@#Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy.@*METHODS@#In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1.@*RESULTS@#The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein.@*CONCLUSION@#Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.


Subject(s)
Adult , Humans , Adaptor Proteins, Signal Transducing , Arteriosclerosis Obliterans/genetics , Autophagy , GRB2 Adaptor Protein , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Signal Transduction
16.
Zhongguo Zhong Yao Za Zhi ; (24): 1475-1484, 2019.
Article in Chinese | WPRIM | ID: wpr-774533

ABSTRACT

To determine the plasma protein binding rate of the nine compounds in Inula cappa extraction by the method of equilibrium dialysis. The proteins in plasma samples were precipitated by methanol, and the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed for determination of the concentrations of the nine active compounds, namely chlorogenic acid, scopolin, neochlorogenic acid, cryptochlorogenic acid, 1,3-O-dicaffeoylquinic acid, galuteolin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, with the internal standard of puerarin. We found that all components have a good linearity(r≥0.999), and accuracy, precision, extraction recovery and stability conformed to the requirements of determination, without endogenous compounds disturbing within the range of optimum concentration. This suggested that the method was stable and reliable, and could be used for the determination of the plasma protein binding rates of the nine active compounds in rat and human plasma of I. cappa. The plasma protein binding rates of the nine active compounds in rat and human plasma respectively were(41.07±0.046)%-(94.95±0.008)%, and(37.66±0.043)%-(97.46±0.013)%. According to the results, there were differences in the plasma protein binding rates of the nine compounds in I. cappa extraction between rat and human.


Subject(s)
Animals , Humans , Rats , Blood Proteins , Metabolism , Chromatography, High Pressure Liquid , Inula , Chemistry , Phytochemicals , Metabolism , Plant Extracts , Metabolism , Protein Binding , Reproducibility of Results , Tandem Mass Spectrometry
17.
Article in Chinese | WPRIM | ID: wpr-775256

ABSTRACT

G protein-coupled receptors(GPCRs)represent the largest class of cell surface receptors,mediating wide range of cellular and physiological processes through their transducers,G proteins and the-arrestins participate in almost all pathological processes. Recent technological advances are revolutionizing the utility of cryo-electron microscopy(cryo-EM),leading to a tremendous progress in the structural studies of biological macromolecules and cryo-EM has played a leading role in the structural biology of GPCR signaling complex. New discoveries of high-resolution threedimensional structures of GPCR signaling complexes based on cryo-EM have emerged vigorously,which depict the common structural characteristics of intermolecular interaction between GPCR and G protein complex-the conformational changes of the transmembrane helix 6 of receptors,and also demonstrate the structural basis of G protein subtype selectivity. Single-particle cryo-EM becomes an efficient tool for identifying the molecular mechanism of receptor-ligand interaction,providing important information for understanding GPCR signaling and the structure-based drug design.


Subject(s)
Cryoelectron Microscopy , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled , Chemistry
18.
Zhongguo Zhong Yao Za Zhi ; (24): 1808-1813, 2019.
Article in Chinese | WPRIM | ID: wpr-773163

ABSTRACT

To determine the inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction,the protein-protein interaction between human immunodeficiency virus type 1( HIV-1) integrase and lens epithelial growth factor p75 protein( LEDGF/p75) was used as a target. The homogeneous time-resolved fluorescence( HTRF) technique was used in the inhibitory activity assay. The results showed that eight endophytic fungi with anti-IN-LEDGF/p75 interaction activity were screened out from fifty-three strains with different morphological characteristic. Among them,106 strain showed strong inhibitory activity against HIV-1 IN-LEDGF/p75 interaction with IC50 value of 5. 23 mg·L-1,and was identified as a potential novel species of Magnaporthaceae family by the analyses of ITS-rDNA,LSU and RPB2 sequences data. This study demonstrated that potential natural active ingredients against the HIV-1 IN-LEDGF/p75 interaction exist in the endophytic fungi of D. versipellis. These results may provide available candidate strain resources for the research and development of new anti-acquired immunodeficiency syndrome drugs.


Subject(s)
Humans , Berberidaceae , Microbiology , Endophytes , Fungi , Chemistry , HIV Integrase , Metabolism , HIV-1 , Intercellular Signaling Peptides and Proteins , Metabolism , Protein Binding
19.
Zhongguo Zhong Yao Za Zhi ; (24): 2559-2565, 2019.
Article in Chinese | WPRIM | ID: wpr-773226

ABSTRACT

Small molecules with physiological or pharmacological activities need to interact with biological macromolecules in order to function in the body. As the protein with the highest proportion of plasma protein,serum albumin is the main protein binding to various endogenous or exogenous small molecules. Serum albumin interacts with small molecules in a reversible non-covalent manner and transports small molecules to target sites. Bovine serum albumin( BSA) is an ideal target protein for drug research because of its low cost and high homology with human serum albumin. The research on the interaction between drugs and BSA has become a hotspot in the fields of pharmacy,medicine,biology and chemistry. In this research,molecular docking method was used to study the interaction between three small ginsenosides with high pharmacological value( Rg_1,Rb_1,Ro) and bovine serum albumin( BSA),and the binding mode information of three ginsenosides interacting with BSA was obtained. The results of molecular docking showed that ginsenosides and amino acid residues in the active pocket of proteins could be combined by hydrophobic action,hydrogen bonding and electrostatic action. The interaction between small ginsenosides and bovine serum albumin is not the only form,and their interaction has many forms of force. The interaction between these molecules and various weak forces is the key factor for the stability of the complex. The results of this study can provide the structural information of computer simulation for the determination of the interaction patterns between active components and proteins of ginseng.


Subject(s)
Animals , Cattle , Binding Sites , Computer Simulation , Ginsenosides , Chemistry , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine , Chemistry , Spectrometry, Fluorescence , Thermodynamics
20.
Article in English | WPRIM | ID: wpr-761793

ABSTRACT

In drug discovery or preclinical stages of development, potency parameters such as IC₅₀, K(i), or K(d) in vitro have been routinely used to predict the parameters of efficacious exposure (AUC, C(min), etc.) in humans. However, to our knowledge, the fundamental assumption that the potency in vitro is correlated with the efficacious concentration in vivo in humans has not been investigated extensively. Thus, the present review examined this assumption by comparing a wide range of published pharmacokinetic (PK) and potency data. If the drug potency in vitro and its in vivo effectiveness in humans are well correlated, the steady-state average unbound concentrations in humans [C(u_ss.avg) = f(u)·F·Dose/(CL·τ) = f(u)·AUCss/τ] after treatment with approved dosage regimens should be higher than, or at least comparable to, the potency parameters assessed in vitro. We reviewed the ratios of C(u_ss.avg)/potency in vitro for a total of 54 drug entities (13 major therapeutic classes) using the dosage, PK, and in vitro potency reported in the published literature. For 54 drugs, the C(u_ss.avg)/in vitro potency ratios were < 1 for 38 (69%) and < 0.1 for 22 (34%) drugs. When the ratios were plotted against f(u) (unbound fraction), “ratio < 1” was predominant for drugs with high protein binding (90% of drugs with f(u) ≤ 5%; i.e., 28 of 31 drugs). Thus, predicting the in vivo efficacious unbound concentrations in humans using only in vitro potency data and f(u) should be avoided, especially for molecules with high protein binding.


Subject(s)
Humans , Drug Discovery , In Vitro Techniques , Plasma , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL