Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtre
1.
Protein & Cell ; (12): 238-261, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982533

Résumé

Neurons migrate from their birthplaces to the destinations, and extending axons navigate to their synaptic targets by sensing various extracellular cues in spatiotemporally controlled manners. These evolutionally conserved guidance cues and their receptors regulate multiple aspects of neural development to establish the highly complex nervous system by mediating both short- and long-range cell-cell communications. Neuronal guidance genes (encoding cues, receptors, or downstream signal transducers) are critical not only for development of the nervous system but also for synaptic maintenance, remodeling, and function in the adult brain. One emerging theme is the combinatorial and complementary functions of relatively limited classes of neuronal guidance genes in multiple processes, including neuronal migration, axonal guidance, synaptogenesis, and circuit formation. Importantly, neuronal guidance genes also regulate cell migration and cell-cell communications outside the nervous system. We are just beginning to understand how cells integrate multiple guidance and adhesion signaling inputs to determine overall cellular/subcellular behavior and how aberrant guidance signaling in various cell types contributes to diverse human diseases, ranging from developmental, neuropsychiatric, and neurodegenerative disorders to cancer metastasis. We review classic studies and recent advances in understanding signaling mechanisms of the guidance genes as well as their roles in human diseases. Furthermore, we discuss the remaining challenges and therapeutic potentials of modulating neuronal guidance pathways in neural repair.


Sujets)
Humains , Guidage axonal/génétique , Neurones , Axones/métabolisme , Transduction du signal/génétique , Communication cellulaire
2.
Protein & Cell ; (12): 848-866, 2018.
Article Dans Anglais | WPRIM | ID: wpr-758025

Résumé

Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.


Sujets)
Animaux , Humains , Souris , Cellules cultivées , Protéines de liaison à l'ADN , Métabolisme , Test de retard de migration électrophorétique , Immunoprécipitation , microARN , Génétique , Métabolisme , Tumeurs , Génétique , Métabolisme
3.
Protein & Cell ; (12): 489-500, 2016.
Article Dans Anglais | WPRIM | ID: wpr-757418

Résumé

MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.


Sujets)
Animaux , Rats , Dendrites , Génétique , Métabolisme , Épines dendritiques , Génétique , Métabolisme , Régulation négative , Physiologie , Protéine-2 de liaison au CpG méthylé , Génétique , microARN , Génétique , Métabolisme
4.
Protein & Cell ; (12): 804-819, 2016.
Article Dans Anglais | WPRIM | ID: wpr-757370

Résumé

Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.


Sujets)
Animaux , Rats , Transport axonal , Physiologie , Cortex cérébral , Biologie cellulaire , Métabolisme , Drosophila melanogaster , Biologie cellulaire , Métabolisme , Embryon de mammifère , Expression des gènes , Laboratoires sur puces , Microscopie confocale , Mitochondries , Métabolisme , Motoneurones , Métabolisme , Mouvement , Mutation , Culture de cellules primaires , Protéine FUS de liaison à l'ARN , Génétique , Métabolisme , Rat Sprague-Dawley , Logiciel
5.
Protein & Cell ; (12): 704-713, 2014.
Article Dans Anglais | WPRIM | ID: wpr-757656

Résumé

Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.


Sujets)
Femelle , Humains , Mâle , Adulte d'âge moyen , Technique de Western , Lignée cellulaire tumorale , Mouvement cellulaire , Génétique , Physiologie , Études de cohortes , Régulation négative , Régulation de l'expression des gènes tumoraux , Cellules HEK293 , Immunohistochimie , Protéines et peptides de signalisation intercellulaire , Métabolisme , Estimation de Kaplan-Meier , Tumeurs du poumon , Génétique , Métabolisme , Anatomopathologie , Protéines de tissu nerveux , Métabolisme , Pronostic , Interférence par ARN , Récepteurs immunologiques , Métabolisme , RT-PCR , Transduction du signal , Génétique , Physiologie , Ubiquitin thiolesterase , Génétique , Métabolisme
6.
Protein & Cell ; (12): 155-161, 2013.
Article Dans Anglais | WPRIM | ID: wpr-757826

Résumé

Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway.


Sujets)
Animaux , Humains , Souris , AMP-Activated Protein Kinases , Génétique , Métabolisme , Molécules d'adhérence cellulaire , Génétique , Métabolisme , Cellules cultivées , Cellules HEK293 , Facteurs de croissance nerveuse , Pharmacologie , Nétrine-1 , Neurites , Physiologie , Neurones , Biologie cellulaire , Métabolisme , Phosphorylation , Liaison aux protéines , Inhibiteurs de protéines kinases , Pharmacologie , Interférence par ARN , Petit ARN interférent , Protéines de fusion recombinantes , Génétique , Transduction du signal , Transfection , Protéines suppresseurs de tumeurs , Pharmacologie
7.
Protein & Cell ; (12): 141-149, 2011.
Article Dans Anglais | WPRIM | ID: wpr-757673

Résumé

Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.


Sujets)
Humains , Séquence d'acides aminés , Substitution d'acide aminé , Protéines de liaison à l'ADN , Génétique , Métabolisme , Mutation , Maladies neurodégénératives , Anatomopathologie , Structure tertiaire des protéines , Protéine FUS de liaison à l'ARN , Chimie , Génétique , Métabolisme , Protéines recombinantes , Génétique , Métabolisme , Toxicité , Saccharomyces cerevisiae , Métabolisme , Sarcosine , Pharmacologie , Thiazoles , Métabolisme
8.
Protein & Cell ; (12): 395-409, 2011.
Article Dans Anglais | WPRIM | ID: wpr-757082

Résumé

Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.


Sujets)
Animaux , Humains , Épissage alternatif , Arabidopsis , Génétique , Dictyostelium , Génétique , Drosophila melanogaster , Génétique , Génome de protozoaire , Phylogenèse , Petites ribonucléoprotéines nucléaires , Classification , Génétique , Saccharomyces cerevisiae , Génétique , Splicéosomes , Génétique , Métabolisme
9.
Protein & Cell ; (12): 477-486, 2011.
Article Dans Anglais | WPRIM | ID: wpr-757074

Résumé

Mutations in the Fused in sarcoma/Translated in liposarcoma gene (FUS/TLS, FUS) have been identified among patients with amyotrophic lateral sclerosis (ALS). FUS protein aggregation is a major pathological hallmark of FUS proteinopathy, a group of neurodegenerative diseases characterized by FUS-immunoreactive inclusion bodies. We prepared transgenic Drosophila expressing either the wild type (Wt) or ALS-mutant human FUS protein (hFUS) using the UAS-Gal4 system. When expressing Wt, R524S or P525L mutant FUS in photoreceptors, mushroom bodies (MBs) or motor neurons (MNs), transgenic flies show age-dependent progressive neural damages, including axonal loss in MB neurons, morphological changes and functional impairment in MNs. The transgenic flies expressing the hFUS gene recapitulate key features of FUS proteinopathy, representing the first stable animal model for this group of devastating diseases.


Sujets)
Sujet âgé , Animaux , Humains , Vieillissement , Génétique , Métabolisme , Anatomopathologie , Sclérose latérale amyotrophique , Génétique , Métabolisme , Anatomopathologie , Animal génétiquement modifié , Modèles animaux de maladie humaine , Drosophila melanogaster , Génétique , Métabolisme , Expression des gènes , Microscopie électronique à balayage , Motoneurones , Métabolisme , Anatomopathologie , Corps pédonculés , Métabolisme , Anatomopathologie , Protéines mutantes , Génétique , Métabolisme , Mutation , Cellules photoréceptrices d'invertébré , Métabolisme , Anatomopathologie , Plasmides , Protéine FUS de liaison à l'ARN , Génétique , Métabolisme , Protéines de fusion recombinantes , Génétique , Métabolisme , Dégénérescence de la rétine , Anatomopathologie , Transfection
10.
Protein & Cell ; (12): 647-655, 2011.
Article Dans Anglais | WPRIM | ID: wpr-757057

Résumé

The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscam ( del17 ) mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.


Sujets)
Animaux , Souris , Molécules d'adhérence cellulaire , Génétique , Métabolisme , Corps calleux , Métabolisme , Anatomopathologie , Génotype , Hydrocéphalie , Génétique , Métabolisme , Anatomopathologie , Souris knockout , Activité motrice , Génétique , Physiologie , Mutation
11.
Protein & Cell ; (12): 267-274, 2010.
Article Dans Anglais | WPRIM | ID: wpr-757729

Résumé

Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors-Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.


Sujets)
Animaux , Humains , Séquence d'acides aminés , Animal génétiquement modifié , Séquence nucléotidique , Amorces ADN , Génétique , Protéines de Drosophila , Génétique , Physiologie , Drosophila melanogaster , Génétique , Physiologie , Malformations oculaires , Génétique , Protéines de l'oeil , Génétique , Physiologie , Techniques de knock-down de gènes , Gènes d'insecte , Données de séquences moléculaires , Protéines associées à la pancréatite , Cellules photoréceptrices d'invertébré , Physiologie , Interférence par ARN , Épissage des ARN , Similitude de séquences d'acides aminés
12.
Protein & Cell ; (12): 552-562, 2010.
Article Dans Anglais | WPRIM | ID: wpr-757696

Résumé

Progranulin (PGRN) has recently emerged as a key player in a subset of frontotemporal dementias (FTD). Numerous mutations in the progranulin gene have been identified in patients with familial or sporadic frontotemporal lobar degeneration (FTLD). In order to understand the molecular mechanisms by which PGRN deficiency leads to FTLD, we examined activity of PGRN in mouse cortical and hippocampal neurons and in human neuroblastoma SH-SY5Y cells. Treatment of mouse neurons with PGRN protein resulted in an increase in neurite outgrowth, supporting the role of PGRN as a neurotrophic factor. PGRN treatment stimulated phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) in cultured neurons. Knockdown of PGRN in SH-SY5Y cells impaired retinoic acid induced differentiation and reduced the level of phosphorylated GSK-3β. PGRN knockdown cells were also more sensitized to staurosporine-induced apoptosis. These results reveal an important role of PGRN in neurite outgrowth and involvement of GSK-3β in mediating PGRN activity. Identification of GSK-3β activation as a downstream event for PGRN signaling provides a mechanistic explanation for PGRN activity in the nervous system. Our work also suggest that loss of axonal growth stimulation during neural injury repair or deficits in axonal repair may contribute to neuronal damage or axonal loss in FTLD associated with PGRN mutations. Finally, our study suggests that modulating GSK-3β or similar signaling events may provide therapeutic benefits for FTLD cases associated with PGRN mutations.


Sujets)
Animaux , Femelle , Humains , Souris , Grossesse , Apoptose , Techniques de culture cellulaire , Différenciation cellulaire , Lignée cellulaire , Embryon de mammifère , Techniques de knock-down de gènes , Glycogen Synthase Kinase 3 , Génétique , Métabolisme , Glycogen synthase kinase 3 beta , Protéines et peptides de signalisation intercellulaire , Génétique , Pharmacologie , Physiologie , Neurites , Physiologie , Neurones , Biologie cellulaire , Physiologie , Phosphorylation , Progranulines , Protéines proto-oncogènes c-akt , Métabolisme , Interférence par ARN
SÉLECTION CITATIONS
Détails de la recherche