Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22274150

ABSTRACT

BackgroundFew studies have assessed the benefits of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. MethodsWe conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (> 18 years) population prioritizing roll-out in over 50-year olds (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at $7 per dose and vaccine delivery costs of $3.90-$6.11 per dose. The cost-effectiveness threshold was USD 919. FindingsSlow roll-out at 30% coverage largely targets over 50-year-olds and resulted in 54% fewer deaths (8,132(7,914 to 8,373)) than no vaccination and was cost-saving (ICER=US$-1,343 (-1,345 to - 1,341) per DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757 to 872) and 5% (282 (251 to 317) but was not cost-effective, using Kenyas cost-effectiveness threshold ($ 919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=$-1,607 (-1,609 to -1,604) per DALY averted) compared to slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. InterpretationWith prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective. KEY QUESTIONSO_ST_ABSWhat is already known?C_ST_ABSO_LIThe COVID-19 pandemic has led to a substantial number of cases and deaths in low-and middle-income countries. C_LIO_LICOVID-19 vaccines are considered the main strategy of curtailing the pandemic. However, many African nations are still at the early phase of vaccination. C_LIO_LIEvidence on the cost-effectiveness of COVID-19 vaccines are useful in estimating value for money and illustrate opportunity costs. However, there is a need to balance these economic outcomes against the potential impact of vaccination. C_LI What are the new findings?O_LIIn Kenya, a targeted vaccination strategy that prioritizes those of an older age and is deployed at a rapid rollout speed achieves greater marginal health impacts and is better value for money. C_LIO_LIGiven the existing high-level population protection to COVID-19 due to prior exposure, vaccination of younger adults is less cost-effective in Kenya. C_LI What do the new findings imply?O_LIRapid deployment of vaccines during a pandemic averts more cases, hospitalisations, and deaths and is more cost-effective. C_LIO_LIAgainst a context of constrained fiscal space for health, it is likely more prudent for Kenya to target those at severe risk of disease and possibly other vulnerable populations rather than to the whole population. C_LI

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21267959

ABSTRACT

IntroductionUnderstanding human mixing patterns relevant to infectious diseases spread through close contact is vital for modelling transmission dynamics and optimisation of disease control strategies. Mixing patterns in low-income countries like Malawi are not well understood. MethodologyWe conducted a social mixing survey in urban Blantyre, Malawi between April and July 2021 (between the 2nd and 3rd wave of COVID-19 infections). Participants living in densely-populated neighbourhoods were randomly sampled and, if they consented, reported their physical and non-physical contacts within and outside homes lasting at least 5 minutes during the previous day. Age-specific mixing rates were calculated, and a negative binomial mixed effects model was used to estimate determinants of contact behaviour. ResultsOf 1,201 individuals enrolled, 702 (58.5%) were female, the median age was 15 years (interquartile range [IQR] 5-32) and 127 (10.6%) were HIV-positive. On average, participants reported 10.3 contacts per day (range: 1-25). Mixing patterns were highly age-assortative, particularly those within the community and with skin-to-skin contact. Adults aged 20-49y reported the most contacts (median:11, IQR: 8-15) of all age groups; 38% (95%CI: 16-63) more than infants (median: 8, IQR: 5-10), who had the least contacts. Household contact frequency increased by 3% (95%CI 2-5) per additional household member. Unemployed participants had 15% (95%CI: 9-21) fewer contacts than other adults. Among long range (>30 meters away from home) contacts, secondary school children had the largest median contact distance from home (257m, IQR 78-761). HIV-positive status in adults >18 years-old was not associated with increased contact patterns (1%, 95%CI -9-12). During this period of relatively low COVID-19 incidence in Malawi, 301 (25.1%) individuals stated that they had limited their contact with others due to COVID-19 precautions; however, their reported contacts were not fewer (8%, 95%CI 1-13). ConclusionIn urban Malawi, contact rates, are high and age-assortative, with little behavioural change due to either HIV-status or COVID-19 circulation. This highlights the limits of contact-restriction-based mitigation strategies in such settings and the need for pandemic preparedness to better understand how contact reductions can be enabled and motivated.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21265742

ABSTRACT

IntroductionVaccines are considered the path out of the COVID-19 pandemic. The government of Kenya is implementing a phased strategy to vaccinate the Kenyan population, initially targeting populations at high risk of severe disease and infection. We estimated the financial and economic unit costs of procuring and delivering the COVID-19 vaccine in Kenya across various vaccination strategies. MethodsWe used an activity-based costing approach to estimate the incremental costs of COVID-19 vaccine delivery, from a health systems perspective. Document reviews and key informant interviews (n=12) were done to inform the activities, assumptions and the resources required. Unit prices were derived from document reviews or from market prices. Both financial and economic vaccine procurement costs per person vaccinated with 2-doses, and the vaccine delivery costs per person vaccinated with 2-doses were estimated and reported in 2021USD. ResultsThe financial costs of vaccine procurement per person vaccinated with 2-doses ranged from $2.89-$13.09 in the 30% and 100% coverage levels respectively, however, the economic cost was $17.34 across all strategies. Financial vaccine delivery costs per person vaccinated with 2-doses, ranged from $4.28-$3.29 in the 30% and 100% coverage strategies: While the economic delivery costs were two to three times higher than the financial costs. The total procurement and delivery costs per person vaccinated with 2-doses ranged from $7.34-$16.47 for the financial costs and $29.7-$24.68 for the economic costs for the 30% and 100% coverage respectively. With the exception of procurement costs, the main cost driver of financial and economic delivery costs was supply chain costs (47-59%) and advocacy, communication and social mobilization (29-35%) respectively. ConclusionThis analysis presents cost estimates that can be used to inform local policy and may further inform parameters used in cost-effectiveness models. The results could potentially be adapted and adjusted to country-specific assumptions to enhance applicability in similar low-and middle-income settings.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21259100

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of a new higher-transmissibility variant. Reopening schools led to a minor increase in transmission between the second and third waves. Our predictions of current population exposure in Kenya ([~]75% June 1st) have implications for a fourth wave and future control strategies. One Sentence SummaryCOVID-19 spread in Kenya is explained by mixing heterogeneity and a variant less constrained by high population exposure

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20186817

ABSTRACT

Policy makers in Africa need robust estimates of the current and future spread of SARS-CoV-2. Data suitable for this purpose are scant. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya. We estimate that the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 34 - 41% of residents infected, and will peak elsewhere in the country within 2-3 months. Despite this penetration, reported severe cases and deaths are low. Our analysis suggests the COVID-19 disease burden in Kenya may be far less than initially feared. A similar scenario across sub-Saharan Africa would have implications for balancing the consequences of restrictions with those of COVID-19.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20181198

ABSTRACT

BackgroundThe COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region. MethodsCombining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020. FindingsIn February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 22% (0-46). As the COVID-19 restrictions to physical contact are lifted, from December 2020, the probability of a large measles outbreak increased to 31% (8-51), 35% (16-52) and 43% (31-56) assuming a 15%, 50% and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 37% (17-54), 44% (29-57) and 57% (48-65) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of restrictions on contact can be overcome by conducting an SIA with [≥] 95% coverage in under-fives. InterpretationWhile contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once physical distancing is relaxed. Implementing delayed SIAs will be critical for prevention of measles outbreaks once contact restrictions are fully lifted in Kenya. FundingThe United Kingdoms Medical Research Council and the Department for International Development

SELECTION OF CITATIONS
SEARCH DETAIL
...