Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22274592

ABSTRACT

BackgroundTwo doses of the BNT162b2 vaccine yielded high effectiveness that wanes within several months. The third dose was effective in mounting a significant humoral and cellular immune response.. MethodsWe followed BNT162b2-vaccinated health-care workers monthly for IgG and neutralizing antibody (NeutAb) titers. Avidity, T-cell activation and microneutralization of sera against different variants of concern (VOC) were assessed for a sub-cohort. Linear mixed models were used to compare the durability of the second and third doses, and to assess if Omicron breakthrough infections were associated with waning dynamics. ResultsOverall 3972 participants with a third dose were followed, the rate of waning of IgG and NeutAb was slower after the third (1.32%/day and 1.32%/day, respectively) compared to the second (2.26%/per day and 3.34%/day) dose. Live-neutralization of Omicron VOC was lower compared to previous strains and demonstrated similar waning from 111 (95%CI:75-166) to 26 (95%CI:16-42) within 4 months. Mean T cell activity decreased from 98{+/-}5.4 T cells/106 PBMC to 59{+/-}9.3, within 3-5 months. Omicron breakthrough infections were associated with lower IgG peak (ratio of means 0.86 95%CI 0.80-0.91), and among participants over 65y with faster waning of both IgG and NeutAb (ratio of mean rates 1.40 95% CI 1.13-1.68 and 3.58 95% CI 1.92-6.67). No waining in IgG avidity was obsereved during 112 days after the 3rd dose. ConclusionThe third dose is more durable than the second dose, yet Omicron is relatively resistant to direct neutralization. The level of humoral response may predict breakthrough infections.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-489630

ABSTRACT

The rapid spread and dominance of the Omicron SARS-CoV-2 over its Delta variant has posed severe global challenges. While extensive research on the role of the Receptor Binding Domain on viral infectivity and vaccine sensitivity has been documented, the role of the spike 681PRRAR/SV687 polybasic motif is less clear. Here we monitored infectivity and vaccine sensitivity of Omicron SARS-CoV-2 pseudovirus against sera samples that were drawn four months post administration of the third dose of BNT162b2 mRNA vaccine. Our findings show that relative to Wuhan-Hu and Delta SARS-CoV-2, Omicron displayed enhanced infectivity and a sharp decline in its sensitivity to vaccine-induced neutralizing antibodies. Furthermore, while the spike proteins form Wuhan-Hu (P681), Omicron (H681) and BA.2 (H681) pseudoviruses modestly promoted cell fusion and syncytia formation, Delta spike (P681R) displayed enhanced fusogenic activity and syncytia formation capability. Live-viruses plaque formation assays confirmed these findings and demonstrated that relatively to the Wuhan-Hu and Omicron SARS-CoV-2, Delta formed more plaques that were smaller in size. Introducing a single P681R point mutation within the Wuhan-Hu spike, or H681R within Omicron spike, restored fusion potential to similar levels observed for Delta spike. Conversely, a R681P point mutation within Delta spike efficiency abolished fusion potential. We conclude that over time, the efficiency of the third dose of the Pfizer vaccine against SARS CoV-2 is waned, and cannot neutralize Omicron. We further verify that the P681 position of the viral spike dictates fusogenicity and syncytia formation.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-486531

ABSTRACT

SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron, compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC - a difference which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22271222

ABSTRACT

In this report, we describe the development and initial validation of novel SARS-COV-2 Omicron-specific reactions that enable the identification of Omicron (BA.1) and BA.2 variants. Mutations that are either shared by both BA.1 and BA.2, or are exclusive for BA.1 or for BA.2 were identified by bioinformatic analysis, and corresponding probe-based quantitative PCR reactions were developed to identify them. We show that multiplex combinations of these reactions provide a single-reaction identification of the sample as BA.1, BA.2, or as non-Omicron SARS-COV-2. All four reactions described herein have a sensitivity of less than ten copies per reaction, and are amendable for multiplexing. The results of this study suggest that the new assays may be useful for testing both clinical and environmental samples to differentiate between these two variants.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-22270948

ABSTRACT

BACKGROUNDFollowing the emergence of the Omicron variant of concern, we investigated immunogenicity, efficacy and safety of BNT162b2 or mRNA1273 fourth dose in an open-label, clinical intervention trial. METHODSPrimary end-points were safety and immunogenicity and secondary end-points were vaccine efficacy in preventing SARS-CoV-2 infections and COVID-19 symptomatic disease. The two intervention arms were compared to a matched control group. Eligible participants were healthcare-workers (HCW) vaccinated with three BNT162b2 doses, and whose IgG antibody levels were [≤]700 BAU (40-percentile). IgG and neutralizing titers, direct neutralization of live VOCs, and T-cell activation were assessed. All participants were actively screened for SARS-CoV-2 infections on a weekly basis. RESULTSOf 1050 eligible HCW, 154 and 120 were enrolled to receive BNT162b2 and mRNA1273, respectively, and compared to 426 age-matched controls. Recipients of both vaccine types had a [~]9-10-fold increase in IgG and neutralizing titers within 2 weeks of vaccination and an 8-fold increase in live Omicron VOC neutralization, restoring titers to those measured after the third vaccine dose. Breakthrough infections were common, mostly very mild, yet, with high viral loads. Vaccine efficacy against infection was 30% (95%CI:-9% to 55%) and 11% (95%CI:-43% to +43%) for BNT162b2 and mRNA1273, respectively. Local and systemic adverse reactions were reported in 80% and 40%, respectively. CONCLUSIONSThe fourth COVID-19 mRNA dose restores antibody titers to peak post-third dose titers. Low efficacy in preventing mild or asymptomatic Omicron infections and the infectious potential of breakthrough cases raise the urgency of next generation vaccine development. Trial registration numberclicaltrials.gov: NCT05231005, NCT05230953

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21267670

ABSTRACT

Using isolates of SARS-CoV-2 WT, Beta, Delta and most importantly Omicron we studied the capability of the BNT162b2 vaccine given in two or three doses to neutralize major SARS-CoV-2 variants of concern (VOC). We demonstrate low neutralization efficiency against delta and wild-type for vaccines with more than 5 months following the second BNT162b2 dose, with no neutralization efficiency against Omicron. We demonstrate the importance of a third dose, by showing a 100-fold increase in neutralization efficiency of Omicron following a third dose, with a 4-fold reduced neutralization compared to that against the Delta VOC. The durability of the effect of the third dose is yet to be determined.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21267293

ABSTRACT

In this report, we describe four RT-qPCR assays that enable rapid identification of the newly emerging SARS-COV-2 Omicron (B.1.1.529) variant of concern. The assays target Omicron characteristic mutations in the nsp6 (Orf1a), spike and nucleocapsid genes. We demonstrate that the assays are straightforward to assemble and perform, are amendable for multiplexing, and may be used as a reliable first-line tool to identify B.1.1.529 suspected samples. Importantly, this is a preliminary development report. Further validation and optimization of the assays described herein will be published hereafter.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21266673

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations at specific amino acids that might impede vaccine efficacy. BriLife(R) (rVSV-{Delta}G-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in Phase II clinical trials. It is based on a replication competent vesicular stomatitis virus (VSV) platform. rVSV-{Delta}G-spike contains several spontaneously-acquired spike mutations that correspond to SARS-CoV-2 variants mutations. We show that human sera from BriLife(R) vaccinees preserve comparable neutralization titers towards alpha, gamma and delta variants, and show less than 3-fold reduction in neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife(R) vaccinees overall maintain neutralizing antibody response against all tested variants. We suggest that BriLife(R) acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21264831

ABSTRACT

In this report, we describe the development of an RT-qPCR assay, termed Alpha Delta assay, which can detect SARS-COV-2 (SC-2) and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in N gene, and the Delta reaction targets the spike gene 156-158 mutations. Additionally, we developed a second Delta-specific assay, used as a confirmatory test for the Alpha Delta assay that targets the 119-120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15-25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha Delta assay and the Orf8-119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole genome sequencing. Lastly, we show that the Alpha Delta and Orf8-119del assays correctly identified the presence of Alpha and Delta lineages RNA in wastewater samples. This study provides a rapid, sensitive and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21262465

ABSTRACT

BackgroundMethodologically rigorous studies on Covid-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection are critically needed to inform national and global policy on Covid-19 vaccine use. In Israel, healthcare personnel (HCP) were initially prioritized for Covid-19 vaccination, creating an ideal setting to evaluate real-world VE in a closely monitored population. MethodsWe conducted a prospective study among HCP in 6 hospitals to estimate the effectiveness of the BNT162b2 mRNA Covid-19 vaccine in preventing SARS-CoV-2 infection. Participants filled out weekly symptom questionnaires, provided weekly nasal specimens, and three serology samples - at enrollment, 30 days and 90 days. We estimated VE against PCR-confirmed SARS-CoV-2 infection using the Cox Proportional Hazards model and against a combined PCR/serology endpoint using Fishers exact test. FindingsOf the 1,567 HCP enrolled between December 27, 2020 and February 15, 2021, 1,250 previously uninfected participants were included in the primary analysis; 998 (79.8%) were vaccinated with their first dose prior to or at enrollment, all with Pfizer BNT162b2 mRNA vaccine. There were four PCR-positive events among vaccinated participants, and nine among unvaccinated participants. Adjusted two-dose VE against any PCR- confirmed infection was 94.5% (95% CI: 82.6%-98.2%); adjusted two-dose VE against a combined endpoint of PCR and seroconversion for a 60-day follow-up period was 94.5% (95% CI: 63.0%-99.0%). Five PCR-positive samples from study participants were sequenced; all were alpha variant. InterpretationOur prospective VE study of HCP in Israel with rigorous weekly surveillance found very high VE for two doses of Pfizer BNT162b2 mRNA vaccine against SARS-CoV-2 during a period of predominant alpha variant circulation. FundingClalit Health Services

11.
Preprint in English | medRxiv | ID: ppmedrxiv-21262162

ABSTRACT

BackgroundViral culture is currently the most accurate method to demonstrate viability and infectivity of Severe acute respiratory syndrome Coronavirus (SARS-2 CoV). Routine clinical diagnosis, however, is mostly performed by PCR - based assays that do not discriminate between infectious and non-virus. Herein, we aimed to determine the correlation between positive viral cultures and either PCR positivity, the Cycle Threshold (Ct) or the number of viral copies. MethodsA systematic electronic literature search was performed and studies that reported both viral SARS-CoV-2 culture and PCR-based assays were included. A separate search for samples from blood, urine, stool, breast milk and tears were performed. To convert Ct values reported in the reviewed studies were to viral genomic copies, calibration experiments with four different reaction performed, using quantified RNA molecules. ResultsA total 540 articles were reviewed, and 38 studies were included in this review. Out of 276 positive-culture of non-severe patients, 272 (98.55%) were negative ten days after symptoms onset, while PCR assays remained positive for up to 67 days. In severely ill or immunocompromised patients positive-culture was obtained up to 32 days and out of 168 cultures, 31 (18.45%) stayed positive after day 10. In non-severe patients, in Ct value greater than 30 only 10.8% were still culture-positive while in Ct >35 it was nearly universally negative. The minimal calculated number of viral genome copies in culture-positive sample was 2.5 x 103 copies / mL. These findings were similar in immunocompromised patients. Recovering positive culture from non-respiratory samples was sporadically obtained in stool or urine samples. Conversion of Ct values to viral genome copies showed variability between different PCR assays and highlighted the need to standardize reports to correctly compare results obtained in different laboratories. ConclusionDuring the pandemic phase, non-severe COVID-19 patients who are recovering and are not immuno-suppressed, can be regarded as non-infectious, within 10 days from symptom onset, or with Ct value greater than 35 (or a calculated viral load lower than 1.2x103 copies / mL). These findings have important implications for recovering patients and asymptomatic patients, with respect to isolation criteria. The conversion of Cq values to viral genome copies described herein may be useful in future work, enabling a more standardized comparison between results reported in different studies from different laboratories.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-21261642

ABSTRACT

The SARS-Coronavirus-2 (SARS-CoV-2) driven pandemic was first recognized in late 2019, and the first few months of its evolution were relatively clock-like, dominated mostly by neutral substitutions. In contrast, the second year of the pandemic was punctuated by the emergence of several variants that bore evidence of dramatic evolution. Here, we compare and contrast evolutionary patterns of various variants, with a focus on the recent Delta variant. Most variants are characterized by long branches leading to their emergence, with an excess of non-synonymous substitutions occurring particularly in the Spike and Nucleocapsid proteins. In contrast, the Delta variant that is now becoming globally dominant, lacks the signature long branch, and is characterized by a step-wise evolutionary process that is ongoing. Contrary to the "star-like" topologies of other variants, we note the formation of several distinct clades within Delta that we denote as clades A-E. We find that sequences from the Delta D clade are dramatically increasing in frequency across different regions of the globe. Delta D is characterized by an excess of non-synonymous mutations, mostly occurring in ORF1a/b, some of which occurred in parallel in other notable variants. We conclude that the Delta surge these days is composed almost exclusively of Delta D, and discuss whether selection or random genetic drift has driven the emergence of Delta D.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-452809

ABSTRACT

The global spread of SARS-CoV-2 led to the most challenging pandemic in this century, posing major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SASR-CoV-2 can provide insights into the virus pathogenesis, and facilitates the development of novel broad-spectrum host-directed therapeutics. Here, employing genome-scale CRISPR screens, we provide a comprehensive data-set of cellular factors that are exploited by WT-SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. These screens identified known and novel host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination and Heparan sulfate biogenesis. In addition, the host phosphatidylglycerol biosynthesis processes appeared to have major anti-viral functions. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant, providing a possible explanation for the increased infectivity of this variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential pro-viral gene for all variants inspected. We revealed that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals showed an elevated level of GATA6, indicating the important role GATA6 may be playing in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and consequently to inhibition of the viral infectivity. Overall, we show GATA6 represents a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-21260760

ABSTRACT

BackgroundThe current practice of COVID-19 diagnosis worldwide is the use of oro-nasopharyngeal (ONP) swabs. Our study aim was to explore mouthwash (MW) as an alternative diagnostic method, in light of the disadvantages of ONP swabs. MethodsCovid-19 outpatients molecular-confirmed by ONP-swab were repeatedly examined with ONP-swab and MW with normal-saline (0.9%). Other types of fluids were compared to normal-saline. The Cq values obtained with each method were compared. ResultsAmong 137 pairs of ONP-swabs and MW samples, 84.6% (116/137) of ONP-swabs were positive by at least one of the genes (N, E, R). However MW detected 70.8% (97/137) of samples as positive, which means 83.6% (97/116) out of positive ONP-swabs, missing mainly Cq value>30. In both methods, the N gene was the most sensitive one. Therefore MW samples targeting N-gene, which was positive in 95/137 (69.3%), is comparable to ONP-swabs targeting E and R genes which gave equal results - 95/137 (69.3%) and 90/137 (65.7%) respectively. Comparing saline MW to distilled-water gave equal results, while commercial mouth-rinsing solutions were less sensitive. ConclusionsMW with normal-saline, especially when tested by N gene, can effectively detect COVID-19 patients. Furthermore, this method was not inferior when compared to R and E genes of ONP-swabs, which are common targets in many laboratories around the world.

15.
Preprint in English | medRxiv | ID: ppmedrxiv-21259957

ABSTRACT

Emerging SARS-CoV-2 variants may threaten global vaccination efforts and awaited reduction in outbreak burden. In this study, we report a novel variant carrying the L452R mutation that emerged from a local B.1.362 lineage, B.1.362+L452R. The L452R mutation is associated with the Delta and Epsilon variants and was shown to cause increased infection and reduction in neutralization in pseudoviruses. Indeed, the B.1.362+L452R variant demonstrated a X4-fold reduction in neutralization capacity of sera from BNT162b2-vaccinated individuals compared to a wild-type strain. The variant infected 270 individuals in Israel between December 2020 and March 2021, until diminishing due to the gain in dominance of the Alpha variant in February 2021. This study demonstrates an independent, local emergence of a variant carrying a critical mutation, L452R, which may have the potential of becoming a variant of concern and emphasizes the importance of routine surveillance and detection of novel variants among efforts undertaken to prevent further disease spread.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-21258081

ABSTRACT

BackgroundIvermectin, an anti-parasitic agent, also has anti-viral properties. Our aim was to assess whether ivermectin can shorten the viral shedding in patients at an early-stage of COVID-19 infection. MethodsThe double-blinded trial compared patients receiving ivermectin 0{middle dot}2 mg/kg for 3 days vs. placebo in non-hospitalized COVID-19 patients. RT-PCR from a nasopharyngeal swab was obtained at recruitment and then every two days. Primary endpoint was reduction of viral-load on the 6th day (third day after termination of treatment) as reflected by Ct level>30 (non-infectious level). The primary outcome was supported by determination of viral culture viability. ResultsEighty-nine patients were eligible (47 in ivermectin and 42 in placebo arm). Their median age was 35 years. Females accounted for 21{middle dot}6%, and 16{middle dot}8% were asymptomatic at recruitment. Median time from symptom onset was 4 days. There were no statistical differences in these parameters between the two groups. On day 6, 34 out of 47 (72%) patients in the ivermectin arm reached the endpoint, compared to 21/ 42 (50%) in the placebo arm (OR 2{middle dot}62; 95% CI: 1{middle dot}09-6{middle dot}31). In a multivariable logistic-regression model, the odds of a negative test at day 6 was 2.62 time higher in the ivermectin group (95% CI: 1{middle dot}06-6{middle dot}45). Cultures at days 2 to 6 were positive in 3/23 (13{middle dot}0%) of ivermectin samples vs. 14/29 (48{middle dot}2%) in the placebo group (p=0{middle dot}008). ConclusionsThere were significantly lower viral loads and viable cultures in the ivermectin group, which could lead to shortening isolation time in these patients. The study is registered at ClinicalTrials.gov NCT 044297411.

17.
Preprint in English | medRxiv | ID: ppmedrxiv-21257439

ABSTRACT

Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health activities and provide valuable data for epidemiological and policy decision making. We developed a multiplex quantitative RT-qPCR (qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions: one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, and one that detects the 242-244 deletion, which is specific to variant B.1.351. The fourth reaction identifies human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants, and not with other major known variants. The assays specificity was tested against a panel of respiratory pathogens (n=16), showing high specificity towards SC-2 RNA. The assays sensitivity was assessed using both In-vitro transcribed RNA and clinical samples, and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide circulating SC-2 variants.

18.
Preprint in English | bioRxiv | ID: ppbiorxiv-438035

ABSTRACT

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

19.
Preprint in English | medRxiv | ID: ppmedrxiv-21253908

ABSTRACT

Routine detection, surveillance and reporting of SARS-CoV-2 novel variants is important, as these threaten to hinder vaccination efforts. Herein we report a local novel strain that includes a non-synonymous mutation in the spike (S) protein - P681H and additional synonymous mutations. The P681H Israeli strain has not been associated with higher infection rates and was neutralized by sera from vaccinated individuals in comparable levels to the B.1.1.7 strain and a non-P681H strain from Israel.

20.
Preprint in English | medRxiv | ID: ppmedrxiv-20201921

ABSTRACT

Conducting numerous, rapid, and reliable PCR tests for SARS-CoV-2 is essential for our ability to monitor and control the current COVID-19 pandemic. Here, we tested the sensitivity and efficiency of SARS-CoV-2 detection in clinical samples collected directly into a mix of lysis buffer and RNA preservative, thus inactivating the virus immediately after sampling. We tested 79 COVID-19 patients and 20 healthy controls. We collected two samples (nasopharyngeal swabs) from each participant: one swab was inserted into a test tube with Viral Transport Medium (VTM), following the standard guideline used as the recommended method for sample collection; the other swab was inserted into a lysis buffer supplemented with nucleic acid stabilization mix (coined NSLB). We found that RT-qPCR tests of patients were significantly more sensitive with NSLB sampling, reaching detection threshold 2.1{+/-}0.6 (Mean{+/-}SE) PCR cycles earlier then VTM samples from the same patient. We show that this improvement is most likely since NSLB samples are not diluted in lysis buffer before RNA extraction. Re-extracting RNA from NSLB samples after 72 hours at room temperature did not affect the sensitivity of detection, demonstrating that NSLB allows for long periods of sample preservation without special cooling equipment. We also show that swirling the swab in NSLB and discarding it did not reduce sensitivity compared to retaining the swab in the tube, thus allowing improved automation of COVID-19 tests. Overall, we show that using NSLB instead of VTM can improve the sensitivity, safety, and rapidity of COVID-19 tests at a time most needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...