Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278045

ABSTRACT

BackgroundThe BNT162b2 COVID-19 vaccine is authorized for children 5-11 years of age and adolescents 12-17 years of age, but in different dose sizes. We assessed BNT162b2 real-world effectiveness against SARS-CoV-2 infection among children and adolescents in Qatar. MethodsThree matched, retrospective, target-trial, cohort studies were conducted to compare incidence of SARS-CoV-2 infection in the national cohort of vaccinated individuals to incidence in the national cohort of unvaccinated individuals. Associations were estimated using Cox proportional-hazards regression models. ResultsEffectiveness of the 10 {micro}g dose for children against Omicron infection was 25.7% (95% CI: 10.0-38.6%). It was highest at 49.6% (95% CI: 28.5-64.5%) right after the second dose, but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI: 21.5-63.3%) among those aged 5-7 years and 16.6% (-4.2-33.2%) among those aged 8-11 years. Effectiveness of the 30 {micro}g dose for adolescents against Omicron infection was 30.6% (95% CI: 26.9-34.1%), but many adolescents were vaccinated months earlier. Effectiveness waned with time after the second dose. Effectiveness was 35.6% (95% CI: 31.2-39.6%) among those aged 12-14 years and 20.9% (13.8-27.4%) among those aged 15-17 years. Effectiveness of the 30 {micro}g dose for adolescents against pre-Omicron infection was 87.6% (95% CI: 84.0-90.4%) and waned relatively slowly after the second dose. ConclusionsPediatric vaccination is associated with modest and rapidly waning protection against Omicron infection. Adolescent vaccination is associated with stronger and more durable protection, perhaps because of the larger dose size. Age at such young age appears to play a role in determining vaccine protection, with greater protection observed in younger than older children or adolescents.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22274060

ABSTRACT

Effectiveness of sotrovimab against severe, critical, or fatal COVID-19 was investigated in Qatar using a case-control study design at a time when BA.2 Omicron subvariant dominated incidence. Adjusted odds ratio of progression to severe, critical, or fatal COVID-19, comparing those sotrovimab-treated to those untreated, was 2.67-fold higher (95% CI: 0.60-11.91).

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22272529

ABSTRACT

BACKGROUNDProtection conferred by natural SARS-CoV-2 infection versus COVID-19 vaccination has not been investigated in rigorously controlled studies. We compared head-to-head protection conferred by natural infection to that from the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar, between February 28, 2020 and March 6, 2022. METHODSTwo national matched retrospective target-trial cohort studies were conducted to compare incidence of SARS-CoV-2 infection and COVID-19 hospitalization and death among those with a documented primary infection to incidence among those with a two-dose primary-series vaccination. Associations were estimated using Cox proportional-hazards regression models. RESULTSThe overall adjusted hazard ratio (AHR) for infection was 0.46 (95% CI: 0.45-0.48) comparing those with a prior infection to those vaccinated with BNT162b2, and 0.51 (95% CI: 0.48-0.53) comparing those with a prior infection to those vaccinated with mRNA-1273. For BNT162b2, the AHR decreased gradually from 0.55 (95% CI: 0.46-0.65) in the fourth month after primary infection/vaccination to 0.31 (95% CI: 0.27-0.37) in the eighth month, while for mRNA-1273, it decreased from 0.80 (95% CI: 0.59-1.07) to 0.35 (95% CI: 0.29-0.41) over the same time period. During the Omicron wave, the AHR was [~]0.50 for BNT162b2 and [~]0.60 for mRNA-1273. The overall AHR for any severe, critical, or fatal COVID-19 (against all variants) was 0.32 (95% CI: 0.10-1.00) for BNT162b2, and 0.58 (95% CI: 0.14-2.43) for mRNA-1273. CONCLUSIONSNatural infection was associated with stronger and more durable protection against infection, regardless of the variant, than mRNA primary-series vaccination. Nonetheless, vaccination remains the safest and optimal tool of protection against infection and COVID-19 hospitalization and death.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22272308

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant has two subvariants, BA.1 and BA.2, that are genetically quite divergent. We conducted a matched, test-negative, case-control study to estimate duration of protection of mRNA COVID-19 vaccines, after the second dose and after a third/booster dose, against BA.1 and BA.2 infections in Qatars population. BNT162b2 effectiveness against symptomatic BA.1 infection was highest at 46.6% (95% CI: 33.4-57.2%) in the first three months after the second dose, but then declined to [~]10% or below thereafter. Effectiveness rapidly rebounded to 59.9% (95% CI: 51.2-67.0%) in the first month after the booster dose, but then started to decline again. BNT162b2 effectiveness against symptomatic BA.2 infection was highest at 51.7% (95% CI: 43.2-58.9%) in the first three months after the second dose, but then declined to [~]10% or below thereafter. Effectiveness rapidly rebounded to 43.7% (95% CI: 36.5-50.0%) in the first month after the booster dose, but then declined again. Effectiveness against COVID-19 hospitalization and death was in the range of 70-80% any time after the second dose, and was greater than 90% after the booster dose. Similar patterns of protection were observed for the mRNA-1273 vaccine. mRNA vaccines provide only moderate and short-lived protection against symptomatic Omicron infections, with no discernable differences in protection against either the BA.1 or BA.2 subvariants. Vaccine protection against COVID-19 hospitalization and death is strong and durable after the second dose, but is more robust after a booster dose.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-22271771

ABSTRACT

BACKGROUNDQatar experienced a large SARS-CoV-2 Omicron (B.1.1.529) wave that started on December 19, 2021 and peaked in mid-January, 2022. We investigated effects of Omicron subvariant (BA.1 and BA.2), previous vaccination, and prior infection on infectiousness of Omicron infections, between December 23, 2021 and February 20, 2022. METHODSUnivariable and multivariable regression analyses were conducted to estimate the association between the RT-qPCR cycle threshold (Ct) value of PCR tests (a proxy for SARS-CoV-2 infectiousness) and each of the Omicron subvariants, mRNA vaccination, prior infection, reason for RT-qPCR testing, calendar week of RT-qPCR testing (to account for phases of the rapidly evolving Omicron wave), and demographic factors. RESULTSCompared to BA.1, BA.2 was associated with 3.53 fewer cycles (95% CI: 3.46-3.60), signifying higher infectiousness. Ct value decreased with time since second and third vaccinations. Ct values were highest for those who received their boosters in the month preceding the RT-qPCR test--0.86 cycles (95% CI: 0.72-1.00) higher than for unvaccinated persons. Ct value was 1.30 (95% CI: 1.20-1.39) cycles higher for those with a prior infection compared to those without prior infection, signifying lower infectiousness. Ct value declined gradually with age. Ct value was lowest for those who were tested because of symptoms and was highest for those who were tested for travel-related purposes. Ct value was lowest during the exponential-growth phase of the Omicron wave and was highest after the wave peaked and was declining. CONCLUSIONSThe BA.2 subvariant appears substantially more infectious than the BA.1 subvariant. This may reflect higher viral load and/or longer duration of infection, thereby explaining the rapid expansion of this subvariant in Qatar.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-22270568

ABSTRACT

BACKGROUNDQatar has been experiencing a large SARS-CoV-2 Omicron (B.1.1.529) wave that started on December 19, 2021. We assessed duration of protection of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines after second dose and after third/booster dose against symptomatic Omicron infection and against COVID-19 hospitalization and death, between December 23, 2021 and February 2, 2022. METHODSVaccine effectiveness was estimated using the test-negative, case-control study design, applying the same methodology used earlier to assess waning of BNT162b2 and mRNA-1273 effectiveness in the same population during earlier infection waves. RESULTSBNT162b2 effectiveness against symptomatic Omicron infection was highest at 61.9% (95% CI: 49.9-71.1%) in the first month after the second dose, but then gradually declined and was at 10% or less starting from the 5th month after the second dose. After the booster, effectiveness rapidly rebounded to peak at about 55% between 2-5 weeks after the booster, but then started to decline again thereafter. Effectiveness against severe, critical, or fatal COVID-19 was maintained at >70% after the second dose and at >90% after the booster with no evidence for declining effectiveness over time. mRNA-1273 effectiveness against symptomatic Omicron infection was highest at 44.8% (95% CI: 16.0-63.8%) in the first three months after the second dose, before gradually declining to negligible levels thereafter. After the booster, effectiveness rapidly rebounded to peak at about 55% between 2-5 weeks after the booster, but then declined again thereafter. Effectiveness against severe, critical, or fatal COVID-19 was high at >60% after the second dose and at >80% after the booster, but the confidence intervals were wide owing to the small number of cases. CONCLUSIONSBNT162b2 and mRNA-1273 vaccines show a similar level and pattern of protection against symptomatic Omicron infection. Protection against Omicron is lower than that against Alpha, Beta, and Delta variants, and wanes more rapidly than against earlier variants after the second and booster doses. Meanwhile, protection against hospitalization and death appears robust and durable after both the second and booster doses.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-22269452

ABSTRACT

BACKGROUNDWaning of COVID-19 vaccine protection and emergence of SARS-CoV-2 Omicron (B.1.1.529) variant have expedited efforts to scale up booster vaccination. This study compared protection afforded by booster doses of the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines, compared to the primary series of only two doses in Qatar, during a large, rapidly growing Omicron wave. METHODSIn a population of 2,232,224 vaccinated persons with at least two doses, two matched, retrospective cohort studies were implemented to investigate effectiveness of booster vaccination against symptomatic SARS-CoV-2 infection and against COVID-19 hospitalization and death, up to January 9, 2022. Association of booster status with infection was estimated using Cox proportional-hazards regression models. RESULTSFor BNT162b2, cumulative symptomatic infection incidence was 2.9% (95% CI: 2.8-3.1%) in the booster-dose cohort and 5.5% (95% CI: 5.3-5.7%) in the primary-series cohort, after 49 days of follow-up. Adjusted hazard ratio for symptomatic infection was 0.50 (95% CI: 0.47-0.53). Booster effectiveness relative to primary series was 50.1% (95% CI: 47.3-52.8%). For mRNA-1273, cumulative symptomatic infection incidence was 1.9% (95% CI: 1.7-2.2%) in the booster-dose cohort and 3.5% (95% CI: 3.2-3.9%) in the primary-series cohort, after 35 days of follow-up. The adjusted hazard ratio for symptomatic infection was 0.49 (95% CI: 0.43-0.57). Booster effectiveness relative to primary series was 50.8% (95% CI: 43.4-57.3%). There were fewer cases of severe COVID-19 in booster-dose cohorts than in primary-series cohorts, but cases of severe COVID-19 were rare in all cohorts. CONCLUSIONSmRNA booster vaccination is associated with modest effectiveness against symptomatic infection with Omicron. The development of a new generation of vaccines targeting a broad range of variants may be warranted.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-22268782

ABSTRACT

BACKGROUNDNatural SARS-CoV-2 infection elicits strong protection against reinfection with the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. However, the Omicron (B.1.1.529) variant harbors multiple mutations that can mediate immune evasion. We estimated effectiveness of prior infection in preventing reinfection (PES) with Omicron and other SARS-CoV-2 variants in Qatar. METHODSPES was estimated using the test-negative, case-control study design, employing a methodology that was recently investigated and validated for derivation of robust estimates for PES. Cases (PCR-positive persons with a variant infection) and controls (PCR-negative persons) were exact-matched by sex, 10-year age group, nationality, and calendar time of PCR test, to control for known differences in the risk of exposure to SARS-CoV-2 infection in Qatar. RESULTSPES against symptomatic reinfection was estimated at 90.2% (95% CI: 60.2-97.6) for Alpha, 84.8% (95% CI: 74.5-91.0) for Beta, 92.0% (95% CI: 87.9-94.7) for Delta, and 56.0% (95% CI: 50.6-60.9) for Omicron. Only 1 Alpha, 2 Beta, 0 Delta, and 2 Omicron reinfections progressed to severe COVID-19. None progressed to critical or fatal COVID-19. PES against hospitalization or death due to reinfection was estimated at 69.4% (95% CI: -143.6-96.2) for Alpha, 88.0% (95% CI: 50.7-97.1) for Beta, 100% (95% CI: 43.3-99.8) for Delta, and 87.8% (95% CI: 47.5-97.1) for Omicron. CONCLUSIONSProtection afforded by prior infection in preventing symptomatic reinfection with Alpha, Beta, or Delta is robust, at about 90%. While such protection against reinfection with Omicron is lower, it is still considerable at nearly 60%. Prior-infection protection against hospitalization or death at reinfection appears robust, regardless of variant.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21262584

ABSTRACT

BACKGROUNDWaning of vaccine protection against SARS-CoV-2 infection or COVID-19 disease is a concern. This study investigated persistence of BNT162b2 (Pfizer-BioNTech) vaccine effectiveness against infection and disease in Qatar, where the Beta and Delta variants have dominated incidence and PCR testing is done at a mass scale. METHODSA matched test-negative, case-control study design was used to estimate vaccine effectiveness against SARS-CoV-2 infection and against any severe, critical, or fatal COVID-19 disease, between January 1, 2021 to August 15, 2021. RESULTSEstimated BNT162b2 effectiveness against any infection, asymptomatic or symptomatic, was negligible for the first two weeks after the first dose, increased to 36.5% (95% CI: 33.1-39.8) in the third week after the first dose, and reached its peak at 72.1% (95% CI: 70.9-73.2) in the first five weeks after the second dose. Effectiveness declined gradually thereafter, with the decline accelerating [≥]15 weeks after the second dose, reaching diminished levels of protection by the 20th week. Effectiveness against symptomatic infection was higher than against asymptomatic infection, but still waned in the same fashion. Effectiveness against any severe, critical, or fatal disease increased rapidly to 67.7% (95% CI: 59.1-74.7) by the third week after the first dose, and reached 95.4% (95% CI: 93.4-96.9) in the first five weeks after the second dose, where it persisted at about this level for six months. CONCLUSIONSBNT162b2-induced protection against infection appears to wane rapidly after its peak right after the second dose, but it persists at a robust level against hospitalization and death for at least six months following the second dose.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21261885

ABSTRACT

The SARS-CoV-2 Delta (B.1.617.2) variant of concern is expanding globally. Here, we assess real-world effectiveness of the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines against this variant in the population of Qatar, using a matched test-negative, case- control study design. BNT162b2 effectiveness against any Delta infection, symptomatic or asymptomatic, was 64.2% (95% CI: 38.1-80.1%) [≥]14 days after the first dose and before the second dose, but was only 53.5% (95% CI: 43.9-61.4%) [≥]14 days after the second dose, in a population in which a large proportion of fully vaccinated persons received their second dose several months earlier. Corresponding effectiveness measures for mRNA-1273 were 79.0% (95% CI: 58.9-90.1%) and 84.8% (95% CI: 75.9-90.8%), respectively. Effectiveness against any severe, critical, or fatal COVID-19 disease due to Delta was 89.7% (95% CI: 61.0-98.1%) for BNT162b2 and 100.0% (95% CI: 41.2-100.0%) for mRNA-1273, [≥]14 days after the second dose. Both BNT162b2 and mRNA-1273 are highly effective in preventing Delta hospitalization and death, but less so in preventing infection, particularly for BNT162b2.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-21261578

ABSTRACT

COVID-19 vaccine protection against infection in immunosuppressed solid organ transplant recipients is unknown but possibly weak with the low proportion of these patients mounting a robust humoral and cellular immune response after vaccination. Using a retrospective cohort study design with cross-over, we assessed vaccine effectiveness among 782 kidney transplant recipients registered at Hamad Medical Corporation, the national public healthcare provider in Qatar, where the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines have been used in the national immunization campaign. Vaccine effectiveness against any SARS-CoV-2 infection was estimated at 46.6% (95% CI: 0.0-73.7%) [≥]14 days after the second dose, 66.0% (95% CI: 21.3-85.3%) [≥]42 days after the second dose, and 73.9% (95% CI: 33.0-89.9%) [≥]56 days after the second dose. Vaccine effectiveness against any severe, critical, or fatal COVID-19 disease was estimated at 72.3% (95% CI: 0.0-90.9%) [≥]14 days after the second dose, 85.0% (95% CI: 35.7-96.5%) [≥]42 days after the second dose, and 83.8% (95% CI: 31.3-96.2%) [≥]56 days after the second dose. Most vaccine breakthrough infections occurred in the first few weeks after receiving the first and/or second dose. Vaccine effectiveness reached considerable levels in kidney transplant recipients, but vaccine protection mounted slowly and did not reach a high level until several weeks after the second dose.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-21261465

ABSTRACT

Severity (acute-care hospitalization), criticality (ICU hospitalization), and fatality of SARS-CoV-2 Beta (B.1.351) variant was investigated through case-control studies applied to complete national cohorts of infection, disease, and death cases in Qatar. Compared to Alpha (B.1.1.7) variant, odds of progressing to severe disease were 1.24-fold (95% CI: 1.11-1.39) higher for Beta. Odds of progressing to critical disease were 1.49-fold (95% CI: 1.13-1.97) higher. Odds of COVID-19 death were 1.57-fold (95% CI: 1.03-2.43) higher. Findings highlight risks to healthcare systems, particularly to intensive care facilities and resources, with increased circulation of Beta.

SELECTION OF CITATIONS
SEARCH DETAIL
...