Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.854
Filter
1.
Toxicol In Vitro ; 98: 105851, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789065

ABSTRACT

After EU ban on animal testing for cosmetics in 2013, there has been an increasing global interest in alternatives test methods. To development for alternatives test method, we need to get the toxic data about in vitro and in vivo of chemicals. However, database sometimes provide limited in vivo and in vitro data on chemicals. Further, the data generated using the OECD TG439 (in vitro skin irritation) are scattered in difference databases, and it is not easy to navigate through them. Therefore, we complied 'Reference Chemical Database System for Skin Irritation Alternative Test (RCDS-Skin Irritation)' to allow easy, one-stop access to test chemical information. We established the systematic RCDS-Skin Irritation by collecting physiochemical properties, CAS number, human data, and in vivo (OECD TG404) data from overseas chemicals database including European Chemicals Agency (ECHA) etc., and in vitro data using Reconstructed human Epidermis (RhE) (OECD TG439). As a result, we developed the RCDS-Skin Irritation that contains information on 149 chemicals including the data we generated by performing tests using EpiDerm™ SIT, SkinEthic™ RHE and KeraSkin™ SIT. Therefore, the RCDS-Skin Irritation established based on our study will provide insight for safety assessment of chemicals and for development of alternative test methods.


Subject(s)
Animal Testing Alternatives , Irritants , Skin Irritancy Tests , Humans , Irritants/toxicity , Skin Irritancy Tests/methods , Databases, Factual , Epidermis/drug effects , Databases, Chemical , Skin/drug effects
2.
Front Immunol ; 15: 1373411, 2024.
Article in English | MEDLINE | ID: mdl-38646535

ABSTRACT

Introduction: Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the ß-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the ß-toxin. Methods: Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for ß-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results: The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the ß-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions: Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.


Subject(s)
Bacterial Toxins , Clostridium perfringens , Animals , Clostridium perfringens/immunology , Bacterial Toxins/immunology , Bacterial Toxins/toxicity , Humans , Vero Cells , Chlorocebus aethiops , Toxicity Tests/methods , Clostridium Infections/veterinary , Clostridium Infections/immunology , Clostridium Infections/diagnosis , THP-1 Cells , Mice , Cell Survival/drug effects , Cell Line , Bacterial Vaccines/immunology , Animal Testing Alternatives/methods
3.
J Hazard Mater ; 471: 134297, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677119

ABSTRACT

Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.


Subject(s)
Animal Testing Alternatives , Chemical and Drug Induced Liver Injury , Machine Learning , Membrane Potential, Mitochondrial , Quantitative Structure-Activity Relationship , Humans , Membrane Potential, Mitochondrial/drug effects , Toxicity Tests , High-Throughput Screening Assays , Liver/drug effects , Hep G2 Cells
4.
ALTEX ; 41(2): 179-201, 2024.
Article in English | MEDLINE | ID: mdl-38629803

ABSTRACT

When The Principles of Humane Experimental Technique was published in 1959, authors William Russell and Rex Burch had a modest goal: to make researchers think about what they were doing in the laboratory - and to do it more humanely. Sixty years later, their groundbreaking book was celebrated for inspiring a revolution in science and launching a new field: The 3Rs of alternatives to animal experimentation. On November 22, 2019, some pioneering and leading scientists and researchers in the field gathered at the Johns Hopkins Bloomberg School of Public Health in Bal-timore for the 60 Years of the 3Rs Symposium: Lessons Learned and the Road Ahead. The event was sponsored by the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the Foundation for Chemistry Research and Initiatives, the Alternative Research & Development Foundation (ARDF), the American Cleaning Institute (ACI), the International Fragrance Association (IFRA), the Institute for In Vitro Sciences (IIVS), John "Jack" R. Fowle III, and the Society of Toxicology (SoT). Fourteen pres-entations shared the history behind the groundbreaking publication, international efforts to achieve its aims, stumbling blocks to progress, as well as remarkable achievements. The day was a tribute to Russell and Burch, and a testament to what is possible when people from many walks of life - science, government, and industry - work toward a common goal.


William Russell and Rex Burch published their book The Principles of Humane Experimental Technique in 1959. The book encouraged researchers to replace animal experiments where it was possible, to refine experiments with animals in order to reduce their suffering, and to reduce the number of animals that had to be used for experiments to the minimum. Sixty years later, a group of pioneering and leading scientists and researchers in the field gathered to share how the publi­cation came about and how the vision inspired international collaborations and successes on many different levels including new laws. The paper includes an overview of important milestones in the history of alternatives to animal experimentation.


Subject(s)
Animal Experimentation , Animal Testing Alternatives , Animals , Animal Testing Alternatives/methods , Animal Welfare , Research Design
5.
ALTEX ; 41(2): 152-178, 2024.
Article in English | MEDLINE | ID: mdl-38579692

ABSTRACT

Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences (starting in 2005) shaped a community that has delivered a comprehensive battery of in vitro test methods (IVB). Its data interpretation is covered by a very recent OECD test guidance (No. 377). Here, we aim to overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of a targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput for this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.


Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.


Subject(s)
Neurotoxicity Syndromes , Toxicity Tests , Animals , Animal Testing Alternatives , Models, Animal , Neurotoxicity Syndromes/etiology
6.
Altern Lab Anim ; 52(3): 149-154, 2024 May.
Article in English | MEDLINE | ID: mdl-38606566

ABSTRACT

In the cosmetics sector, many products such as shampoos have a probability of accidental ocular exposure during their routine use. One very specific safety parameter is the residence time of the substance on the corneal surface, as prolonged exposure may cause injury. In this study, we developed a system that simulates corneal exposure to blinking and tear flow, for comparing the corneal clearance times of viscous detergent formulations. The Ex Vivo Eye Irritation Test (EVEIT), which uses corneal explants from discarded rabbit eyes from an abattoir, was used as the basis for the new system. To simulate blinking, we developed a silicone wiping membrane to regularly move across the corneal surface, under conditions of constant addition and aspiration of fluid, to mimic tear flow. Six shampoo formulations were tested and were shown to differ widely in their corneal clearance time. Three groups could be identified according to the observed clearance times (fast, intermediate and slow); the reference shampoo had the shortest clearance time of all tested formulations. With this new system, it is now possible to investigate an important physicochemical parameter, i.e. corneal clearance time, for the consideration of ocular safety during the development of novel cosmetic formulations.


Subject(s)
Blinking , Cornea , Animals , Rabbits , Cornea/drug effects , Blinking/drug effects , Animal Testing Alternatives/methods , Hair Preparations , Tears/drug effects
7.
Food Chem Toxicol ; 188: 114644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615796

ABSTRACT

Next-Generation Risk Assessment (NGRA) aims to implement New Approach Methodologies (NAMs) into risk assessment and to rely on new in vivo testing in animals only as a last resort. However, various technical and regulatory hurdles impede their regulatory implementation. Assumptions about the public's expectations could act as barriers to the acceptance of NAMs. This study aimed at investigating public views of animal testing and potential alternatives, namely in vitro and in silico testing. An online survey was conducted (N = 965). The results suggest that people make trade-offs, as they experience negative affect regarding in vivo testing, which partly might explain their openness regarding certain alternatives. In vitro tests were attributed the highest ability to determine harmful effects of chemicals for different endpoints, followed by in vivo and in silico tests. Our results further showed that many people accept chemicals to be only tested with alternatives, with highest acceptance for household consumer products, food contact material or building materials and less accepting for medicines and foods. This article addresses potential challenges that might arise from public perceptions and thus, contributes to the bottom-up initiatives to overcome the hurdles to the implementation of NAMs in regulatory risk assessment.


Subject(s)
Public Opinion , Risk Assessment/methods , Humans , Animals , Animal Testing Alternatives/methods , Female , Male , Adult , Surveys and Questionnaires , Middle Aged , Young Adult
8.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679282

ABSTRACT

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Subject(s)
Dermatitis, Phototoxic , Epidermis , Humans , Epidermis/drug effects , Epidermis/radiation effects , Animal Testing Alternatives/methods , Ultraviolet Rays , Toxicity Tests/methods , Models, Biological
9.
Altern Lab Anim ; 52(3): 166-176, 2024 May.
Article in English | MEDLINE | ID: mdl-38626463

ABSTRACT

The Korean Center for the Validation of Alternative Methods (KoCVAM), which promotes the Three Rs principles and the use of alternative methods in Korea, has been operating within the Toxicological Screening and Testing Division of the Ministry of Food and Drug Safety (MFDS) since 2009. KoCVAM has exchanged opinions and information on the development and validation of non-animal alternative test methods as part of the International Cooperation on Alternative Test Methods (ICATM), and provided input into draft OECD Test Guidelines (TGs). Several Korean laws (e.g. the Cosmetics Act) encourage the use of alternative test methods for chemical testing and assessment. To promote and support the use of alternative test methods in the country, KoCVAM has published information and provided training on the national guidelines, which are based on the OECD TGs. In addition, KoCVAM has held annual training workshops on alternative test methods, to help Korean research institutions (including GLP test facilities) to implement them. In addition, by helping to develop and validate alternative test methods that were adopted in OECD TG 442B, TG 492 and TG 439, KoCVAM has contributed to the enhanced competitiveness of Korean industry on the worldwide stage.


Subject(s)
Animal Testing Alternatives , Republic of Korea , Animal Testing Alternatives/methods , Animals , Guidelines as Topic
10.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558477

ABSTRACT

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Embryo, Nonmammalian , Toxicity Tests , Water Pollutants, Chemical , Animals , Toxicity Tests/methods , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Animal Testing Alternatives , Cyprinidae , Crustacea/drug effects , Aniline Compounds/toxicity , Fishes
11.
Toxicol In Vitro ; 98: 105816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604524

ABSTRACT

Skin corrosion testing is integral to evaluating the potential harm posed by chemicals, impacting regulatory decisions on safety, transportation, and labeling. Traditional animal testing methods are giving way to in vitro alternatives, such as reconstructed human epidermis (RhE) models, aligning with evolving ethical standards. This study evaluates the QileX-RhE test system's performance for chemical subcategorization within the OECD TG 431 framework. Results demonstrate its ability to differentiate subcategories, accurately predicting 83% of UN GHS Category 1A and 73% of UN GHS Category 1B/1C chemicals with 100% sensitivity in corrosive prediction. Additionally, this study provides a comprehensive assessment of the test method's performance by employing nuanced parameters such as positive predictive value (PPV), negative predictive value (NPV), post-test odds and likelihood rations, offering valuable insights into the applicability and effectiveness of the QileX-RhE test method.


Subject(s)
Animal Testing Alternatives , Organisation for Economic Co-Operation and Development , Humans , Skin Irritancy Tests/methods , Caustics/toxicity , Epidermis/drug effects
12.
Toxicol In Vitro ; 98: 105824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614139

ABSTRACT

The TRPV1 receptor, which is known to contribute significantly to pain perception, has recently been identified as a useful tool for predicting eye stinging potential in cosmetics. In this study, HEK-293 cells with high TRPV1 expression were utilized to evaluate calcium influx related to receptor activation triggered by chemicals and cosmetic formulations. The cells were exposed to increasing concentrations of substances to cause or not some aggression to the eye, and TRPV1 activity was assessed by measuring intracellular FURA-2 AM fluorescence signal. To confirm TRPV1 channel activation, capsazepine, a capsaicin antagonist, was employed in addition to using capsaicin as a positive control. The study's results indicate that this novel model can identify compounds known to cause some aggression to the eye, such as stinging, considering a cut-off value of 60% of Ca2+ influx exposed to the lowest evaluated concentration (0.00032%). When applied to the cosmetic baby formulation, although the presented model exhibited higher sensitivity by classifying as stinging formulations that had previously undergone clinical testing and were deemed non-stinging, the assay could serve as a valuable in vitro tool for predicting human eye stinging sensation and can be used as a tier 1 in an integrated testing strategy.


Subject(s)
Calcium , Cosmetics , TRPV Cation Channels , Humans , Cosmetics/toxicity , HEK293 Cells , TRPV Cation Channels/metabolism , Calcium/metabolism , Eye/drug effects , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Animal Testing Alternatives
14.
Regul Toxicol Pharmacol ; 149: 105623, 2024 May.
Article in English | MEDLINE | ID: mdl-38631606

ABSTRACT

The Bone-Marrow derived Dendritic Cell (BMDC) test is a promising assay for identifying sensitizing chemicals based on the 3Rs (Replace, Reduce, Refine) principle. This study expanded the BMDC benchmarking to various in vitro, in chemico, and in silico assays targeting different key events (KE) in the skin sensitization pathway, using common substances datasets. Additionally, a Quantitative Structure-Activity Relationship (QSAR) model was developed to predict the BMDC test outcomes for sensitizing or non-sensitizing chemicals. The modeling workflow involved ISIDA (In Silico Design and Data Analysis) molecular fragment descriptors and the SVM (Support Vector Machine) machine-learning method. The BMDC model's performance was at least comparable to that of all ECVAM-validated models regardless of the KE considered. Compared with other tests targeting KE3, related to dendritic cell activation, BMDC assay was shown to have higher balanced accuracy and sensitivity concerning both the Local Lymph Node Assay (LLNA) and human labels, providing additional evidence for its reliability. The consensus QSAR model exhibits promising results, correlating well with observed sensitization potential. Integrated into a publicly available web service, the BMDC-based QSAR model may serve as a cost-effective and rapid alternative to lab experiments, providing preliminary screening for sensitization potential, compound prioritization, optimization and risk assessment.


Subject(s)
Benchmarking , Dendritic Cells , Quantitative Structure-Activity Relationship , Dendritic Cells/drug effects , Humans , Animals , Support Vector Machine , Computer Simulation , Dermatitis, Allergic Contact , Allergens/toxicity , Animal Testing Alternatives/methods , Bone Marrow Cells/drug effects , Local Lymph Node Assay , Mice
15.
Science ; 383(6689): 1279, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513025
16.
ALTEX ; 41(2): 260-272, 2024.
Article in English | MEDLINE | ID: mdl-38430006

ABSTRACT

Since the late 2010s, the idea of phase-out planning for animal experimentation (PPAE) has come to the foreground of political debates, but central notions and arguments are understood differently by different participants and stand in need of clarification. This article draws on public communications on ten political projects related to PPAE to propose a philosophical explication of PPAE and to articulate proponents' central moral argument. According to the argument, the phase-out of animal experimentation is morally desirable and planned interventions are both necessary and sufficient to achieve it. The normative and descriptive premises of the argument are stated and discussed, flagging questions that need answering for a more thorough assessment of the argument. This results in a series of seven action points for researchers and stakeholders of phase-out planning for animal experimentation. The overall goal is to enable an open and productive discussion about PPAE in public, political, and academic settings.


In recent years, a new demand has entered the political arena: that the phase-out of animal experimentation should be planned. But it is important to understand exactly what this means. This article draws on ten documents from governments, parliaments, and NGOs to tease out what they mean by "planning the phase-out of animal experimentation." It also discusses the main argument that is advanced in favor of phase-out planning and highlights seven gaps in our knowledge that we should try to fill in order to move the discussion forward. In sum, the article is the first to explicitly define phase-out planning for animal experimentation and to directly discuss its pros and cons from a philosophical point of view. This is helpful in avoiding misunderstandings and talking past each other, enabling an open and productive debate.


Subject(s)
Animal Experimentation , Animals , Humans , Animal Testing Alternatives
17.
Pharmeur Bio Sci Notes ; 2024: 12-26, 2024.
Article in English | MEDLINE | ID: mdl-38533690

ABSTRACT

For more than 50 years, in vivo assays have been used for testing pharmaceutical product safety due to their assumed ability to broadly detect potential unidentified contaminants. As part of these in vivo tests, the animal tests for depressor substances and histamine have been described in the European Pharmacopoeia since its first edition in 1977. Both tests measure the effect of histamine and histamine-like substances, using guinea-pigs and cats respectively. In 2024, the Histamine (2.6.10) general chapter is referenced in the Production section of four monographs and 10 monographs have variations of a sentence on designing the manufacturing process to eliminate or minimise substances lowering blood pressure in this same section, without referencing the chapter. The Depressor substances (2.6.11) chapter is referenced only in the Histamine (2.6.10) chapter as a next step if the histamine test is invalid. A historical search was performed and it has shown that the tests for histamine and for depressor substances were introduced by different groups of experts in an inconsistent way at different times, and for different reasons, leading to non-harmonised approaches across monographs. The control of histamine and other depressor substances has been the subject of numerous debates where their use was questioned. During these discussions, reports on positive cases or batches failing the test for histamine or depressor substances were anecdotal. In addition, in vivo tests can be considered non-specific, very variable, time-consuming, costly and ethically doubtful. More importantly, the majority of in vivo methods originate from a time when good manufacturing practice was not widely used and formal method validation requirements were not yet established. In view of the above, the removal of all references to animal tests for histamine or depressor substances from all texts still referring to them is proposed. Since the sentences in the Production section referring to the control of "substances lowering blood pressure", "vasoactive substances" or "hypotensive substances" appeared as remainders of the animal test without further guarantee of safety, it will also be proposed to remove all these sentences from the concerned monographs. Ultimately, the suppression of general chapters 2.6.10 and 2.6.11 from the Ph. Eur. is envisaged. Independently from the above, it is also envisaged to elaborate a new general chapter Histamine in active substances (2.5.47) to include physicochemical or immunochemical methods enabling the detection of histamine. This new text would aim at supporting manufacturers in their histamine control strategy following the inclusion of precaution statements in the general monograph on Products of fermentation (1468); these statements had been added in Ph. Eur. Supplements 9.6 and 10.4, following adverse events related to a GMP issue with gentamicin sulfate. This strategy has been endorsed by the European Pharmacopoeia Commission at its 177th Session in November 2023. The concerned monographs would be a subject of public consultation in Pharmeuropa 36.2 (April 2024).


Subject(s)
Animal Testing Alternatives , Histamine , Animals , Guinea Pigs , Histamine/analysis , Cats
18.
Regul Toxicol Pharmacol ; 148: 105595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453128

ABSTRACT

Several New Approach Methodologies (NAMs) for hazard assessment of skin sensitisers have been formally validated. However, data regarding their applicability on certain product classes are limited. The purpose of this project was to provide initial evidence on the applicability domain of GARD™skin and GARD™potency for the product class of agrochemical formulations. For this proof of concept, 30 liquid and 12 solid agrochemical formulations were tested in GARDskin for hazard predictions. Formulations predicted as sensitisers were further evaluated in the GARDpotency assay to determine GHS skin sensitisation category. The selected formulations were of product types, efficacy groups and sensitisation hazard classes representative of the industry's products. The performance of GARDskin was estimated by comparing results to existing in vivo animal data. The overall accuracy, sensitivity, and specificity were 76.2% (32/42), 85.0% (17/20), and 68.2% (15/22), respectively, with the predictivity for liquid formulations being slightly higher compared to the solid formulations. GARDpotency correctly subcategorized 14 out of the 17 correctly predicted sensitisers. Lack of concordance was justifiable by compositional or borderline response analysis. In conclusion, GARDskin and GARDpotency showed satisfactory performance in this initial proof-of-concept study, which supports consideration of agrochemical formulations being within the applicability domain of the test methods.


Subject(s)
Agrochemicals , Dermatitis, Allergic Contact , Animals , Agrochemicals/chemistry , Irritants/pharmacology , Skin , Biological Assay , Proof of Concept Study , Animal Testing Alternatives
19.
Toxicol Lett ; 394: 138-145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458340

ABSTRACT

Benzocaine is a widely employed local anaesthetic; however, there is a notable dearth of preclinical and clinical evidence regarding its safety in ophthalmological products. To address this, a comprehensive strategy incorporating in silico and in vitro methodologies was proposed for assessing benzocaine's ocular toxicity without animal testing. To collect the in silico evidence, the QSAR Toolbox (v4.5) was used. A single exposure to two benzocaine concentrations (2% and 20%) was evaluated by in vitro methods. Hen's Egg Chorioallantoic Membrane Test (HET-CAM) was performed to evaluate the effects on the conjunctiva. To study corneal integrity, Short Time Exposure test (STE) and Bovine Corneal Opacity and Permeability (BCOP) assay, followed by histopathological analysis, were carried out. Results from both in silico and in vitro methodologies categorize benzocaine as non-irritating. The histopathological analysis further affirms the safety of using benzocaine in eye drops, as no alterations were observed in evaluated corneal strata. This research proposes a useful combined strategy to provide evidence on the safety of local anaesthetics and particularly show that 2% and 20% benzocaine solutions do not induce eye irritation or corneal damage, supporting the potential use of benzocaine in the development of ophthalmic anesthetic products.


Subject(s)
Corneal Injuries , Corneal Opacity , Animals , Cattle , Female , Benzocaine/toxicity , Chickens , Cornea , Irritants/toxicity , Animal Testing Alternatives
20.
Neurotoxicology ; 102: 48-57, 2024 May.
Article in English | MEDLINE | ID: mdl-38552718

ABSTRACT

Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.


Subject(s)
Brain , Caenorhabditis elegans , Neurotoxicity Syndromes , Toxicity Tests , Animals , Neurotoxicity Syndromes/etiology , Brain/drug effects , Brain/growth & development , Toxicity Tests/methods , Caenorhabditis elegans/drug effects , Humans , Zebrafish , Planarians/drug effects , Behavior, Animal/drug effects , Animal Testing Alternatives/methods , Risk Assessment , High-Throughput Screening Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...