Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836164

RESUMEN

Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years. Berries were sampled at several time points after the treatment, and grapes were analyzed for sugars, acidity, free and bound aroma precursors, amino acids, and targeted and untargeted RNA-Seq transcriptional profiles. The results obtained indicated that the DYE treatment did not interfere with the technological ripening parameters of sugars and acidity. Some aroma precursors, including cys-3MH and GSH-3MH, responsible for the typical aromatic nuances of Sauvignon Blanc, were stimulated by the treatment during both vintages. The levels of amino acids and the global RNA-seq transcriptional profiles indicated that DYE spraying upregulated ROS homeostatic and thermotolerance genes, as well as ethylene and jasmonic acid biosynthetic genes, and activated abiotic and biotic stress responses. Overall, the data suggested that the DYE reduced berry oxidative stress through the regulation of specific subsets of metabolic and hormonal pathways.

2.
Plants (Basel) ; 11(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36365453

RESUMEN

Silicon (Si) is a beneficial element for the growth of various crops, but its effect on plant metabolism is still not completely elucidated. Even if Si is not classified as an essential element for plants, the literature has reported its beneficial effects in a variety of species. In this work, the influence of Si foliar application on berry composition was evaluated on four grapevine cultivars. The berries of Teroldego and Oseleta (red grapes) and Garganega and Chardonnay (white grapes) were analyzed after foliar application of silicon by comparing the treated and control groups. A targeted metabolomic approach was used that focused on secondary metabolites, amino acids, sugars, and tartaric acid. Measurements were performed using liquid chromatography coupled with a diode array detector and mass spectrometry (LC-DAD-MSn), a LC-evaporative light scattering detector (ELDS), and LC-MS/MS methods specific for the analysis of each class of constituents. After the data collection, multivariate models, PCA, PLS-DA, OPLS-DA, were elaborated to evaluate the effect of Si application in the treated vs. control samples. Results were different for each grape cultivar. A significant increase in anthocyanins was observed in the Oseleta cultivar, with 0.48 mg g-1 FW in the untreated samples vs. 1.25 mg g-1 FW in the Si-treated samples. In Garganega, Si treatment was correlated with increased proline levels. In Chardonnay, the Si application was related to decreased tartaric acid. The results of this work show for the first time that Si induces cultivar specific changes in the berry composition in plants cultivated without an evident abiotic or biotic stress.

3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232482

RESUMEN

Echinacea purpurea (L.) Moench is one of the most economically important medicinal plants, cultivated worldwide for its high medicinal value and with several industrial applications in both pharmaceutical and food industries. Thanks to its various phytochemical contents, including caffeic acid derivatives (CADs), E. purpurea extracts have antioxidant, anti-inflammatory, and immuno-stimulating properties. Among CADs, chicoric acid is one of the most important compounds which have shown important pharmacological properties. The present research was aimed at optimizing the production of chicoric acid in E. purpurea cell culture. Methyl jasmonate (MeJa) at different concentrations and for different duration of treatments was utilized as elicitor, and the content of total polyphenols and chicoric acid was measured. Several genes involved in the chicoric acid biosynthetic pathway were selected, and their expression evaluated at different time points of cell culture growth. This was performed with the aim of identifying the most suitable putative molecular markers to be used as a proxy for the early prediction of chicoric acid contents, without the need of expensive quantification methods. A correlation between the production of chicoric acid in response to MeJa and an increased response to oxidative stress was also proposed.


Asunto(s)
Productos Biológicos , Echinacea , Acetatos , Antioxidantes/metabolismo , Productos Biológicos/metabolismo , Ácidos Cafeicos , Técnicas de Cultivo de Célula , Ciclopentanos , Echinacea/química , Echinacea/metabolismo , Oxilipinas , Preparaciones Farmacéuticas/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Succinatos
4.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502437

RESUMEN

Maize root responds to nitrate by modulating its development through the coordinated action of many interacting players. Nitric oxide is produced in primary root early after the nitrate provision, thus inducing root elongation. In this study, RNA sequencing was applied to discover the main molecular signatures distinguishing the response of maize root to nitrate according to their dependency on, or independency of, nitric oxide, thus discriminating the signaling pathways regulated by nitrate through nitric oxide from those regulated by nitrate itself of by further downstream factors. A set of subsequent detailed functional annotation tools (Gene Ontology enrichment, MapMan, KEGG reconstruction pathway, transcription factors detection) were used to gain further information and the lateral root density was measured both in the presence of nitrate and in the presence of nitrate plus cPTIO, a specific NO scavenger, and compared to that observed for N-depleted roots. Our results led us to identify six clusters of transcripts according to their responsiveness to nitric oxide and to their regulation by nitrate provision. In general, shared and specific features for the six clusters were identified, allowing us to determine the overall root response to nitrate according to its dependency on nitric oxide.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma , Zea mays/metabolismo , Benzoatos , Fertilizantes , Imidazoles , Óxido Nítrico/metabolismo
5.
Plant Physiol Biochem ; 152: 32-43, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32387912

RESUMEN

Serine acetyltransferase (SAT) (EC 2.3.1.30) is the rate-limiting enzyme of cysteine (Cys) biosynthesis, providing the decisive precursor for the ubiquitous defense thiol glutathione (GSH). Together with O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) SAT generates Cys in the cytosol, plastids, and mitochondria of vascular plants. The current study aimed to overproduce Cys and GSH for enhanced stress tolerance via overexpression of the feedback-insensitive isoform of serine acetyltransferase from tobacco, i.e., NtSAT4. Constitutive overexpression of NtSAT4 in Brassica napus resulted in the 2.6-fold-4-fold higher SAT activity in different subcellular compartment-specific lines. This higher SAT activity led to a 2.5-fold-3.5-fold higher steady-state level of free Cys and 2.2-fold-5.3-fold elevated level of GSH in leaves compared with nontransformed plants. Among the compartment-specific lines, the mitochondrial targeted NtSAT4 overexpressor line M-182 showed the highest levels of Cys (3.5-fold) and GSH (5.3-fold) compared with wild-type plants. Overexpression of NtSAT4 conferred a physiological advantage in terms of enhanced tolerance against oxidative stress with hydrogen peroxide and the heavy metal cadmium (Cd). The NtSAT4 overexpressor lines showed a significantly higher amount of iron (Fe) translocation from roots to shoots compared with nontransformed plants. Overall, these results suggest that overexpression of NtSAT4 is a promising approach to creating plants with tolerance to heavy metals and oxidative stress and, in addition, may potentially improve plant nutrition in terms of enhanced Fe translocation from roots to shoots.

6.
Plants (Basel) ; 9(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079303

RESUMEN

As an essential nutrient required for plant growth and development, sulfur (S) deficiency in productive systems limits yield and quality. This special issue hosts a collection of original research articles, mainly based on contributions from the 11th International Plant Sulfur Workshop held on 16-20 September 2018 in Conegliano, Italy, focusing on the following topics: (1) The germinative and post-germinative behaviour of Brassica napus seeds when severe S limitation is applied to the parent plants; (2) the independence of S deficiency from the mRNA degradation initiation enzyme PARN in Arabidopsis; (3) the glucosinolate distribution in the aerial parts of sel1-10, a disruption mutant of the sulfate transporter SULTR1;2, in mature Arabidopsis thaliana plants; (4) the accumulation of S-methylcysteine as its γ-glutamyl dipeptide in Phaseolus vulgaris; and (5) the role of ferric iron chelation-strategy components in the leaves and roots of maize, have provided new insights into the effect of S availability on plant functionality. Moreover, the role of S deficiency in root system functionality has been highlighted, focusing on (6) the contribution of root hair development to sulfate uptake in Arabidopsis, and (7) the modulation of lateral root development by the CLE-CLAVATA1 signaling pathway under S deficiency. The role of S in plants grown under drought conditions has been investigated in more detail focusing (8) on the relationship between S-induced stomata closure and the canonical ABA signal transduction machinery. Furthermore, (9) the assessment of S deficiency under field conditions by single measurements of sulfur, chloride, and phosphorus in mature leaves, (10) the effect of fertilizers enriched with elemental S on durum wheat yield, and (11,12) the impact of elemental S on the rhizospheric bacteria of durum wheat contributed to enhance the scientific knowledge on S nutrition under field conditions.

7.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968691

RESUMEN

Nitrogen (N) is an essential macronutrient for crops. Plants have developed several responses to N fluctuations, thus optimizing the root architecture in response to N availability. Nitrate and ammonium are the main inorganic N forms taken up by plants, and act as both nutrients and signals, affecting gene expression and plant development. In this study, RNA-sequencing was applied to gain comprehensive information on the pathways underlying the response of maize root, pre-treated in an N-deprived solution, to the provision of nitrate or ammonium. The analysis of the transcriptome shows that nitrate and ammonium regulate overlapping and distinct pathways, thus leading to different responses. Ammonium activates the response to stress, while nitrate acts as a negative regulator of transmembrane transport. Both the N-source repress genes related to the cytoskeleton and reactive oxygen species detoxification. Moreover, the presence of ammonium induces the accumulation of anthocyanins, while also reducing biomass and chlorophyll and flavonoids accumulation. Furthermore, the later physiological effects of these nutrients were evaluated through the assessment of shoot and root growth, leaf pigment content and the amino acid concentrations in root and shoot, confirming the existence of common and distinct features in response to the two nitrogen forms.


Asunto(s)
Compuestos de Amonio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitratos/farmacología , Nitrógeno/metabolismo , Transcriptoma , Zea mays/fisiología , Aminoácidos , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Análisis de Secuencia de ARN , Zea mays/genética , Zea mays/crecimiento & desarrollo
9.
Molecules ; 24(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897820

RESUMEN

Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples ('Golden Delicious', 'Red Delicious', 'Granny Smith' and 'Royal Gala'). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients.


Asunto(s)
Cromatografía Liquida/métodos , Malus/química , Fenoles/química , Espectrometría de Masas en Tándem/métodos , Triterpenos/química , Ácido Clorogénico/química , Frutas/química
10.
Plants (Basel) ; 8(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654485

RESUMEN

Phytohormone abscisic acid (ABA) is the canonical trigger for stomatal closure upon abiotic stresses like drought. Soil-drying is known to facilitate root-to-shoot transport of sulfate. Remarkably, sulfate and sulfide-a downstream product of sulfate assimilation-have been independently shown to promote stomatal closure. For induction of stomatal closure, sulfate must be incorporated into cysteine, which triggers ABA biosynthesis by transcriptional activation of NCED3. Here, we apply reverse genetics to unravel if the canonical ABA signal transduction machinery is required for sulfate-induced stomata closure, and if cysteine biosynthesis is also mandatory for the induction of stomatal closure by the gasotransmitter sulfide. We provide genetic evidence for the importance of reactive oxygen species (ROS) production by the plasma membrane-localized NADPH oxidases, RBOHD, and RBOHF, during the sulfate-induced stomatal closure. In agreement with the established role of ROS as the second messenger of ABA-signaling, the SnRK2-type kinase OST1 and the protein phosphatase ABI1 are essential for sulfate-induced stomata closure. Finally, we show that sulfide fails to close stomata in a cysteine-biosynthesis depleted mutant. Our data support the hypothesis that the two mobile signals, sulfate and sulfide, induce stomatal closure by stimulating cysteine synthesis to trigger ABA production.

11.
J Sci Food Agric ; 99(3): 1046-1054, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30014572

RESUMEN

BACKGROUND: Quince (Cydonia oblonga) fruits can be considered as starting material for the extraction of health-promoting phytochemicals, to be exploited in food and nutraceuticals. In the present work, liquid chromatography coupled with diode array detection and tandem mass spectrometry analysis allowed the study of the phytochemical composition of quince fruits and to compare it with those of six commercial apple varieties. RESULTS: The distribution and quantification of secondary metabolites in peel and pulp were studied and compared with six commercial apple varieties. Furthermore the in vitro antioxidant activity was determined by 2,2-diphenyl-2-picrylhydrazyl (DPPH) assay. Quince fruit presented significant amounts of shikimic and quinic acid derivatives, as well as flavonoids and procyanidins. Compared with apple, quince fruit composition was characterized by the presence of 4-caffeoylshikimic acid, 4-caffeoyl quinic acid, quercetin-3,7-diglucoside, kaempferol-3-O-rhamnoside and kaempferol-7-O-glucoside, and the dihydrochalcones were not detectable. The peel showed the highest contents of phenolics, whereas 3-O-caffeoylquinic acid was the most abundant compound in the quince pulp. The Pearson correlation index was calculated considering the quantitative amount of the phenolic constituents and the radical scavenging activity toward DPPH· both for peel and pulp extracts. CONCLUSIONS: This study highlighted the presence of significant amounts of valuable secondary metabolites in quince fruit, in particular the procyanidins and caffeoyl esters with shikimic and quinic acid. Notably, owing to the higher content in phenolic compounds and the stronger antioxidant capacity compared with the other fruits considered, the use of C. oblonga as a source of antioxidant can be valuable in nutraceuticals, revealing new possible applications of quince fruit. © 2018 Society of Chemical Industry.


Asunto(s)
Antioxidantes/análisis , Frutas/química , Rosaceae/química , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión/métodos , Suplementos Dietéticos , Alimentos Funcionales , Malus/química , Proantocianidinas/análisis , Espectrometría de Masas en Tándem/métodos
12.
Plant Cell ; 30(12): 2973-2987, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30538155

RESUMEN

Plants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis (Arabidopsis thaliana). We uncovered that, in the guard cells, sulfate activates NADPH oxidases to produce reactive oxygen species (ROS) and that this ROS induction is essential for sulfate-induced stomata closure. In line with the function of ROS as the second-messenger of abscisic acid (ABA) signaling, sulfate does not induce ROS in the ABA-synthesis mutant, aba3-1, and sulfate-induced ROS were ineffective at closing stomata in the ABA-insensitive mutant abi2-1 and a SLOW ANION CHANNEL1 loss-of-function mutant. We provided direct evidence for sulfate-induced accumulation of ABA in the cytosol of guard cells by application of the ABAleon2.1 ABA sensor, the ABA signaling reporter ProRAB18:GFP, and quantification of endogenous ABA marker genes. In concordance with previous studies, showing that ABA DEFICIENT3 uses Cys as the substrate for activation of the ABSCISIC ALDEHYDE OXIDASE3 (AAO3) enzyme catalyzing the last step of ABA production, we demonstrated that assimilation of sulfate into Cys is necessary for sulfate-induced stomatal closure and that sulfate-feeding or Cys-feeding induces transcription of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, limiting the synthesis of the AAO3 substrate. Consequently, Cys synthesis-depleted mutants are sensitive to soil-drying due to enhanced water loss. Our data demonstrate that sulfate is incorporated into Cys and tunes ABA biosynthesis in leaves, promoting stomatal closure, and that this mechanism contributes to the physiological water limitation response.


Asunto(s)
Ácido Abscísico/metabolismo , Cisteína/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Sulfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Xilema/metabolismo , Xilema/fisiología
13.
Molecules ; 23(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544589

RESUMEN

BACKGROUND: Eruca sativa Mill. is a good source of glucosinolates (GLS), phenolic compounds and unsaturated fatty acids, being a valuable material for the production of functional-foods or nutraceutical ingredients. Extraction by supercritical CO2 (SCO2) can be used and the limitations due to the apolar nature of CO2 can be overcome using co-solvents. In this paper different cosolvents and conditions were used for SCO2 extraction and the composition of the obtained extracts was studied by LC-MS. RESULTS: Water resulted the ideal co-solvent, allowing the extraction of glucosinolates in comparable amounts to the classical procedure with boiling water, as it can be carried out at mild temperatures (45 °C vs. >100 °C). Increasing the pressure improved the GLS extraction. On the other hand polyphenol extraction under the studied conditions was not influenced by pressure and temperature variations. The in vitro antioxidant effect of the obtained extracts was also measured, showing significant activity in the DPPH and FC tests. CONCLUSIONS: The GLS, flavonoids and lipids composition of the obtained extracts was studied, showing the presence of numerous antioxidant constituents useful for nutraceutical applications. The extraction method using SCO2 and water as co-solvent presents advantages in terms of safety because these solvents are generally recognised as safe. Water as cosolvent at 8% resulted useful for the extraction of both glucosinolates and phenolics in good amount and is environmentally acceptable as well as safe for food production.


Asunto(s)
Brassicaceae/química , Dióxido de Carbono/química , Fitoquímicos/análisis , Solventes/química , Espectrometría de Masas en Tándem/métodos , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Cromatografía Liquida , Glucosinolatos/análisis , Glucosinolatos/química , Lípidos/química , Fenoles/análisis , Fitoquímicos/química , Picratos/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Presión , Metabolismo Secundario , Espectrometría de Masa por Ionización de Electrospray , Temperatura
14.
J Mass Spectrom ; 53(9): 882-892, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29992756

RESUMEN

In this paper, we investigated the fragmentation of the main triterpene acids of apple using an liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MSn ) approach and high-resolution mass spectrometry (HR-MS) (Q-TOF). Triterpenes were isolated using semipreparative high-performance liquid chromatography, and chemical structures were elucidated by HR-MS and nuclear magnetic resonance spectroscopy. Finally, compounds were used to study MSn behavior in ion trap. Isolated triterpenes present similar structures, bearing carboxyl group linked to C-17 and different substitutions. We observed significant changes in MS2 spectra, which were useful for further compound identification. The observed fragments allowed the discrimination of different derivatives, namely, pomaceic, annurcoic, euscaphic, pomolic, corosolic, maslinic, betulinic, oleanolic, and ursolic acids. The proposed method allows a rapid identification of triterpene acids, and it could be useful for the analysis of these compounds in apple fruits and in other natural sources.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Malus/química , Espectrometría de Masas/métodos , Triterpenos/análisis , Frutas/química
15.
J Environ Sci (China) ; 55: 274-282, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28477822

RESUMEN

Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental
16.
Plant Cell Environ ; 40(1): 95-107, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27726154

RESUMEN

Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic, salicylic and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18% of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared with sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general stress from nutrient-specific regulation in roots of Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Deficiencias de Hierro , Raíces de Plantas/genética , Potasio/metabolismo , Azufre/deficiencia , Biología de Sistemas , Transcriptoma/genética , Adaptación Fisiológica , Aniones , Arabidopsis/genética , Genes de Plantas , Homeostasis/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Transcripción Genética
17.
Waste Manag ; 59: 267-275, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27815029

RESUMEN

The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume.


Asunto(s)
Biodegradación Ambiental , Helianthus/metabolismo , Nitrógeno/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Humedales , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Cyperus , Fertilizantes , Humanos , Nitrógeno/química , Fósforo , Poaceae , Polietileno/química , Agua
18.
BMC Plant Biol ; 16(1): 247, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829370

RESUMEN

BACKGROUND: Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g. sulfate for stomata closure or glutathione for scavenging of reactive oxygen species), the assimilatory sulfate reduction pathway is almost not investigated at the molecular or at the whole plant level during drought. RESULTS: In the present study, we elucidated the role of assimilatory sulfate reduction in roots and leaves of the staple crop maize after application of drought stress. The time-resolved dynamics of the adaption processes to the stress was analyzed in a physiological relevant situation -when prolonged drought caused significant oxidation stress but root growth should be maintained. The allocation of sulfate was significantly shifted to the roots upon drought and allowed for significant increase of thiols derived from sulfate assimilation in roots. This enabled roots to produce biomass, while leaf growth was stopped. Accumulation of harmful reactive oxygen species caused oxidation of the glutathione pool and decreased glutathione levels in leaves. Surprisingly, flux analysis using [35S]-sulfate demonstrated a significant down-regulation of sulfate assimilation and cysteine synthesis in leaves due to the substantial decrease of serine acetyltransferase activity. The insufficient cysteine supply caused depletion of glutathione pool in spite of significant transcriptional induction of glutathione synthesis limiting GSH1. Furthermore, drought impinges on transcription of membrane-localized sulfate transport systems in leaves and roots, which provides a potential molecular mechanism for the reallocation of sulfur upon prolonged water withdrawal. CONCLUSIONS: The study demonstrated a significant and organ-specific impact of drought upon sulfate assimilation. The sulfur metabolism related alterations at the transcriptional, metabolic and enzyme activity level are consistent with a promotion of root growth to search for water at the expense of leaf growth. The results provide evidence for the importance of antagonistic regulation of sulfur metabolism in leaves and roots to enable successful drought stress response at the whole plant level.


Asunto(s)
Glutatión/metabolismo , Hojas de la Planta/metabolismo , Azufre/metabolismo , Zea mays/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Sulfatos/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
19.
Front Plant Sci ; 7: 1371, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683583

RESUMEN

Two selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7 days before harvest at 0, 5, 10, and 20 mg Se per plant. Selenium levels were up to 1200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2-3-fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots). The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 µM selenate for 1 week. Selenate treatment led to a 20-30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7-15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr) and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 µg) after a single foliar spray of 5 mg selenate per plant or 1 week of 5-10 µM selenate supply in hydroponics. The radishes metabolized selenate to the anticarcinogenic compound Se-methyl-selenocysteine. Selenate treatment enhanced levels of other nutraceuticals in radish roots, including glucoraphanin. Therefore, Se biofortification can produce plants with superior health benefits.

20.
Waste Manag ; 55: 265-75, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27349171

RESUMEN

Old landfill leachate was treated in lab-scale phytotreatment units using three oleaginous species: sunflower (H), soybean (S) and rapeseed (R). The specific objectives of this study were to identify the effects of plant species combinations with two different soil textures on the reduction of COD, total N (nitrogen) and total P (phosphorous); to identify the correlation between biomass growth and removal efficiency; to assess the potential of oily seeds for the production of biodiesel. The experimental test was carried out using 20L volume pots installed in a greenhouse under different leachate percentages in the feeding and subsequent COD, N and P loads. Significant removal efficiencies were achieved: COD (ɳ>80%), total N (ɳ>70%) and total P (ɳ>95%). Better performances were displayed by the clayey soil. Plants irrigated with leachate, when compared to control units fed only with water and nutrient solution (Hoagland solution), developed a larger plant mass. Sunflower was the best performing species.


Asunto(s)
Biodegradación Ambiental , Productos Agrícolas , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Nitrógeno , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA