Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-490867

RESUMEN

Since the emergence of SARS-CoV-2, humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralisation responses against SARS-CoV-2Wuhan, SARS-CoV-2, SARS-CoV-2{delta} and SARS-CoV-2o pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2 or SARS-CoV-2{delta}, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design. Author SummaryNeutralising antibodies provide protection against viruses and are generated because of vaccination or prior infections. The main target of anti-SARS-CoV-2 neutralising antibodies is a protein called Spike, which decorates the viral particle and mediates viral entry into cells. As SARS-CoV-2 evolves, mutations accumulate in the spike protein, allowing the virus to escape antibody-mediated immunity and decreasing vaccine effectiveness. Multiple SARS-CoV-2 variants have appeared since the start of the COVID-19 pandemic, causing various waves of infection through the population and infecting-in some cases-people that had been previously infected or vaccinated. Since the antibody response is highly specific, individuals infected with different variants are likely to have different repertoires of neutralising antibodies. We studied the breadth and potency of the antibody-mediated response against different SARS-CoV-2 variants using sera from vaccinated people as well as from people infected with different variants. We show that potency of the antibody response against different SARS-CoV-2 variants depends on the particular variant that infected each person, the exposure type (infection or vaccination) and the number and order of exposures. Our study provides insight into the interplay between virus evolution and immunity, as well as important information for the development of better vaccination strategies.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22272915

RESUMEN

ObjectiveTo determine how the severity of successively dominant SARS-CoV-2 variants changed over the course of the COVID-19 pandemic. DesignRetrospective cohort analysis. SettingCommunity- and hospital-sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board. ParticipantsAll sequenced non-nosocomial adult COVID-19 cases in NHS GG&C infected with the relevant SARS-CoV-2 lineages during analysis periods. B.1.177/Alpha: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta: 1st July - 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron: 1st - 31st December 2021 (n = 3858). Main outcome measuresAdmission to hospital, ICU, or death within 28 days of positive COVID-19 test ResultsFor B.1.177/Alpha, 300 of 807 B.1.177 cases were recorded as hospitalised or worse, compared to 232 of 833 Alpha cases. After adjustment, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177. For Alpha/Delta, 113 of 2104 Alpha cases were recorded as hospitalised or worse, compared to 230 of 3448 Delta cases. After adjustment, the cumulative odds ratio was 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha. For non-AY.4.2 Delta/AY.4.2 Delta, 845 of 8644 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 101 of 969 AY.4.2 Delta cases. After adjustment, the cumulative odds ratio was 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. For non-AY.4.2 Delta/Omicron, 30 of 1164 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 26 of 2694 Omicron cases. After adjustment, the median cumulative odds ratio was 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta. ConclusionsThe direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity demonstrates that severity associated with future SARS-CoV-2 variants is unpredictable.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268111

RESUMEN

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron, the fifth VOC to be described, harbours 30 amino acid mutations in spike including 15 in the receptor-binding domain. Here, we demonstrate substantial evasion of neutralisation by Omicron in vitro using sera from vaccinated individuals. Importantly, these data are mirrored by a substantial reduction in real-world vaccine effectiveness that is partially restored by booster vaccination. We also demonstrate that Omicron does not induce cell syncytia and favours a TMPRSS2-independent endosomal entry pathway. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260128

RESUMEN

ObjectivesThe SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. MethodsIn this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. ResultsOur cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus non-Alpha variant). ConclusionsThe Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253587

RESUMEN

ObjectivesPatients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. MethodsWe combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. ResultsOf 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. ConclusionsNear-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248677

RESUMEN

The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a lockdown was introduced on 23rd March 2020 with a restriction of peoples movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus success. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248603

RESUMEN

Enhanced community surveillance is a key pillar of the public health response to COVID-19. Asymptomatic carriage of SARS-CoV-2 is a potentially significant source of transmission, yet remains relatively poorly understood. Disruption of dental services continues with significantly reduced capacity. Ongoing precautions include pre- and/or at appointment COVID-19 symptom screening and use of enhanced personal protective equipment (PPE). This study aimed to investigate SARS-CoV-2 infection in dental patients to inform community surveillance and improve understanding of risks in the dental setting. Thirty-one dental care centres across Scotland invited asymptomatic screened patients over 5-years-old to participate. Following verbal consent and completion of sociodemographic and symptom history questionnaire, trained dental teams took a combined oropharyngeal and nasal swab sample using standardised VTM-containing testkits. Samples were processed by the Lighthouse Lab and patients informed of their results by SMS/e-mail with appropriate self-isolation guidance in the event of a positive test. Over a 13-week period (from 3August to 31October2020) n=4,032 patients, largely representative of the population, were tested. Of these n=22 (0.5%; 95%CI 0.5%, 0.8%) tested positive for SARS-CoV-2. The positivity rate increased over the period, commensurate with uptick in community prevalence identified across all national testing monitoring data streams. All positive cases were successfully followed up by the national contact tracing program. To the best of our knowledge this is the first report of a COVID-19 testing survey in asymptomatic-screened patients presenting in a dental setting. The positivity rate in this patient group reflects the underlying prevalence in community at the time. These data are a salient reminder, particularly when community infection levels are rising, of the importance of appropriate ongoing Infection Prevention Control and PPE vigilance, which is relevant as healthcare team fatigue increases as the pandemic continues. Dental settings are a valuable location for public health surveillance.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20124834

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, emerged in Wuhan, China in December 2019 and spread rapidly throughout the world. Understanding the introductions of this new coronavirus in different settings may assist control efforts and the establishment of frameworks to support rapid response in future infectious disease outbreaks. We investigated the first four weeks of emergence of the SARS-CoV-2 virus in Scotland after the first case reported on the 1st March 2020. We obtained full genome sequences from 452 individuals with a laboratory-confirmed diagnosis of COVID-19, representing 20% of all cases until 1st April 2020 (n=2310). This permitted a genomic epidemiology approach to study the introductions and spread of the SARS-2 virus in Scotland. From combined phylogenetic and epidemiological analysis, we estimated at least 113 introductions of SARS-CoV-2 into Scotland during this period. Clusters containing multiple sequences suggestive of onward transmission occurred in 48/86 (56%). 42/86 (51%) clusters had no known international travel history indicating undetected introductions. The majority of viral sequences were most closely related to those circulating in other European countries, including Italy, Austria and Spain. Travel-associated introductions of SARS-CoV-2 into Scotland predated travel restrictions in the UK and other European countries. The first local transmission occurred three days after the first case. A shift from travel-associated to sustained community transmission was apparent after only 11 days. Undetected introductions occurred prior to the first known case of COVID-19. Earlier travel restrictions and quarantine measures might have resulted in fewer introductions into Scotland, thereby reducing the number of cases and the subsequent burden on health services. The high number of introductions and transmission rates were likely to have impacted on national contact tracing efforts. Our results also demonstrate that local real-time genomic epidemiology can be used to monitor transmission clusters and facilitate control efforts to restrict the spread of COVID-19. FundingMRC (MC UU 1201412), UKRI/Wellcome (COG-UK), Wellcome Trust Collaborator Award (206298/Z/17/Z - ARTIC Network; TCW Wellcome Trust Award 204802/Z/16/Z Research in contextO_ST_ABSEvidence before this studyC_ST_ABSCoronavirus disease-2019 (COVID-19) was first diagnosed in Scotland on the 1st of March 2020 following the emergence of the causative severe acute respiratory system coronavirus 2 (SARS-CoV-2) virus in China in December 2019. During the first month of the outbreak in Scotland, 2310 positive cases of COVID-19 were detected, associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths. The number of introductions into Scotland and the source of those introductions was not known prior to this study. Added value of this studyUsing a combined phylogenetic and epidemiological approach following real-time next generation sequencing of 452 SARS-CoV-2 samples, it was estimated that the virus was introduced to Scotland on at least 113 occasions, mostly from other European countries, including Italy, Austria and Spain. Localised outbreaks occurred in the community across multiple Scottish health boards, within healthcare facilities and an international conference and community transmission was established rapidly, before local and international lockdown measures were introduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...