Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Sci. agric ; 80: e20210102, 2023. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1361160

RESUMO

Microbial biodiversity of an environment can contribute to plant growth and increase crop yield. Plant extracts from soybean (Glycine max (L.) Merrill) were investigated on soybean plants grown after inoculation with these extracts. Soil samples were collected from two important Brazilian soybean-growing regions to produce the extracts used in the experiments. The extracts were produced with material collected from aboveground biomass and rhizosphere of soybean plants cultivated in a controlled greenhouse (phase 1). The extracts produced in phase 1 were applied in a sequential experiment (phase 2). Phase 2 was conducted to examine the plant microbiome after the microbial alteration process in the greenhouse through seed inoculation with the extracts produced previously. Samples of aboveground biomass were collected to determine root dry matter and crop yield. Bacterial 16S rRNA sequences were processed to determine the final microbial content of soybean. The inoculated treatments had lower species diversity; however, the phyla Firmicutes and Bacteroidetes were more abundant in the treatments than in the non-inoculated treatment. The soybean plant stem in the inoculated treatment also had a positive response to enrichment of the bacterial classes Betaproteobacteria, Bacilli and Flavobacteria. Inoculation affected the microbial composition of soybean plants. The alteration of microbiome changes revealed differences for crop yield between the inoculated and non-inoculated treatments, with up to 93.5 % higher crop yields per plant according to the extract applied.


Assuntos
Glycine max/genética , RNA Ribossômico 16S/análise , Extratos Vegetais/análise , Agricultura Sustentável/economia
2.
Biomed Res Int ; 2020: 4194052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32382549

RESUMO

PURPOSE: The goal of this paper is to describe the green conversion of agricultural waste products, such as molasses and corn steep liquor, into large amounts of D(-) lactic acid using a facilitated multipulse fed-batch strategy and affordable pH neutralizer. This is a very low-cost process because there is no need for hydrolysis of the waste products. The fed-batch strategy increases lactic acid productivity by avoiding inhibition caused by a high initial substrate concentration, and the selected controlling agent prevents cell stress that could be caused by high osmotic pressure of the culture media. METHODS: The effects of different carbon and nitrogen sources on lactic acid production were investigated, and the best concentrations of the medium components were determined. To optimize the culture conditions of the Lactobacillus delbrueckii strain, the effects of pH control, temperature, neutralizing agent, agitation, and inoculum size in batch cultures were investigated. Fed-batch strategies were also studied to improve production and productivity. RESULT: A high titer of D(-) lactic acid (162g/liter) was achieved after 48 hours of fermentation. Productivity at this point was 3.37 g/L·h. The optimum conditions were a temperature of 39°C, pH 5.5 controlled by the addition of Ca(OH)2, agitation at 150 rpm, and inoculum size of 25% (v/v). CONCLUSION: The production of high optical purity D(-) lactic acid through L. delbrueckii fermentation with molasses and corn steep liquor is a promising economical alternative process that can be performed on the industrial scale.


Assuntos
Técnicas de Cultura Celular por Lotes , Ácido Láctico/biossíntese , Lactobacillus delbrueckii/crescimento & desenvolvimento , Melaço , Resíduos , Concentração de Íons de Hidrogênio
3.
Front Bioeng Biotechnol ; 8: 631284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520976

RESUMO

Polyhydroxyalkanoate (PHA) bioplastic was synthesized by Burkholderia glumae MA13 from carbon sources and industrial byproducts related to sugarcane biorefineries: sucrose, xylose, molasses, vinasse, bagasse hydrolysate, yeast extract, yeast autolysate, and inactivated dry yeast besides different inorganic nitrogen sources. Sugarcane molasses free of pre-treatment was the best carbon source, even compared to pure sucrose, with intracellular polymer accumulation values of 41.1-46.6% cell dry weight. Whereas, xylose and bagasse hydrolysate were poor inducers of microbial growth and polymer synthesis, the addition of 25% (v/v) sugarcane vinasse to the culture media containing molasses was not deleterious and resulted in a statistically similar maximum polymer content of 44.8% and a maximum PHA yield of 0.18 g/g, at 34°C and initial pH of 6.5, which is economic and ecologically interesting to save water required for the industrial processes and especially to offer a fermentative recycling for this final byproduct from bioethanol industry, as an alternative to its inappropriate disposal in water bodies and soil contamination. Ammonium sulfate was better even than tested organic nitrogen sources to trigger the PHA synthesis with polymer content ranging from 29.7 to 44.8%. GC-MS analysis showed a biopolymer constituted mainly of poly(3-hydroxybutyrate) although low fractions of 3-hydroxyvalerate monomer were achieved, which were not higher than 1.5 mol% free of copolymer precursors. B. glumae MA13 has been demonstrated to be adapted to synthesize bioplastics from different sugarcane feedstocks and corroborates to support a biorefinery concept with value-added green chemicals for the sugarcane productive chain with additional ecologic benefits into a sustainable model.

4.
Braz. j. microbiol ; Braz. j. microbiol;47(3): 640-646, July-Sept. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-788973

RESUMO

ABSTRACT Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.


Assuntos
Ácido Láctico/biossíntese , Lacticaseibacillus rhamnosus/metabolismo , Resíduos Industriais , Temperatura , Biodegradação Ambiental , Biotransformação , Adsorção , Fermentação , Técnicas de Cultura Celular por Lotes , Concentração de Íons de Hidrogênio
5.
Braz. J. Microbiol. ; 47(3): 640-646, Jul-Set. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-23463

RESUMO

Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.(AU)


Assuntos
Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/enzimologia , Ácido Láctico
6.
Braz J Microbiol ; 47(3): 640-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27266630

RESUMO

Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.


Assuntos
Resíduos Industriais , Ácido Láctico/biossíntese , Lacticaseibacillus rhamnosus/metabolismo , Adsorção , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Biotransformação , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
7.
Appl Biochem Biotechnol ; 164(7): 1160-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21360091

RESUMO

Sugar concentration from sugarcane juice and yeast autolysate increased lactic acid production more than the other agro-industrial substrates tested. The concentrations of these two components were further optimized using the Plackett-Burman design and response surface method. A second-order polynomial regression model estimated that a maximal lactic acid production of 66.11 g/L would be obtained when the optimal values of sugar and yeast autolysate were 116.9 and 44.25 g/L, respectively. To validate the optimization of the medium composition, studies were carried out using the optimized conditions to confirm the result of the response surface analysis. After 48 h, lactic acid production using the shake-flask method was at 60.2 g/L.


Assuntos
Carbono/metabolismo , Microbiologia Industrial/métodos , Ácido Láctico/biossíntese , Leuconostoc , Nitrogênio/metabolismo , Algoritmos , Extratos Celulares , Meios de Cultura/química , Fermentação , Leuconostoc/crescimento & desenvolvimento , Leuconostoc/metabolismo , Modelos Estatísticos , Melaço , Saccharum/metabolismo , Leveduras/metabolismo
8.
J Sci Food Agric ; 90(11): 1944-50, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20564419

RESUMO

BACKGROUND: L(+)-Lactic acid is used in the pharmaceutical, textile and food industries as well as in the synthesis of biodegradable plastics. The aim of this study was to investigate the effects of different medium components added in cassava wastewater for the production of L(+)-lactic acid by Lactobacillus rhamnosus B 103. RESULTS: The use of cassava wastewater (50 g L(-1) of reducing sugar) with Tween 80 and corn steep liquor, at concentrations (v/v) of 1.27 mL L(-1) and 65.4 mL L(-1) respectively led to a lactic acid concentration of 41.65 g L(-1) after 48 h of fermentation. The maximum lactic acid concentration produced in the reactor after 36 h of fermentation was 39.00 g L(-1) using the same medium, but the pH was controlled by addition of 10 mol L(-1) NaOH. CONCLUSION: The use of cassava wastewater for cultivation of L. rhamnosus is feasible, with a considerable production of lactic acid. Furthermore, it is an innovative proposal, as no references were found in the scientific literature on the use of this substrate for lactic acid production.


Assuntos
Resíduos Industriais , Ácido Láctico/biossíntese , Lacticaseibacillus rhamnosus/metabolismo , Manihot , Reciclagem , Fermentação , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA