RESUMO
Among the numerous organochlorines (OCs) applied in the French West Indies (FWI), chlordecone (hydrated form C10Cl10O2H2; CLD) still causes major environmental pollution nowadays. A recent report revealed the unexpected presence in FWI environment of transformation products (TPs) of CLD not routinely monitored due to a lack of commercial standards. Here, we present a method for surface waters and groundwaters to analyze CLD, its main TPs (hydroCLDs, chlordecol (CLDOH), 10-monohydroCLDOH and polychloroindenes) and other OCs. We developed an SPME-GC-SIM/MS method with a PDMS-DVB fiber. Since CLDOH-d commonly used as internal standard (IS) proved unsuitable, we synthesized several IS candidates, and finally identified 10-monohydro-5-methyl-chlordecol as a satisfactory IS for CLDOH and 10-monohydroCLDOH avoiding the use of 13C-labelled analogue. LODs for CLD and its TPs varied from 0.3 to 10 ng/L, equal to or below LODs of the two laboratories, BRGM (the French geological survey) and LDA26 (one of the French Departmental Analytical Laboratories), requested in FWI pollution monitoring that used liquid-liquid extractions and advanced facilities (LLE-GC-MS/MS and LLE-LC-MS/MS methods, respectively). Then, we extended the multi-residue method to 30 OCs (CLD and its TPs, mirex, ß-HCH, lindane, dieldrin, aldrin, HCB, hexachlorobutadiene, TCE, PCE) and applied it to 30 surface and ground waters from FWI. While CLD, 8- and 10-monohydroCLD, CLDOH, 10-monohydroCLDOH, dieldrin, and ß-HCH were detected and quantified, pentachloroindene, another CLD TP, was sporadically found in trace levels. A comparison with BRGM and LDA26 confirmed the interest of the SPME method. Results suggested an underestimation of CLDOH and an overestimation of high CLD concentrations with one of the currently used routine protocol. In light of these findings, previous temporal monitoring of environmental waters in FWI were re-examined and revealed some atypical values, which may indeed be due to analytical bias. These discrepancies call for intensified efforts to reliably quantify CLD and its TPs.
RESUMO
Anaerobic bioreactors are an efficient technology for the biodegradation of emerging contaminants in environmental matrices. In this work, a horizontal-flow anaerobic immobilized biomass (HAIB) bioreactor was used to remove caffeine (CAF), which is frequently found in various aqueous matrices. The acrylic bench top bioreactor, with dimensions of 100 × 5.00 cm, was operated with a hydraulic retention time (HRT) of 12 h, during 45 weeks, under mesophilic conditions. The operation was performed in 4 phases: without CAF addition (phase I); CAF spiked at 300 µg L-1 (phase II); CAF at 600 µg L-1 (phase III); and CAF at 900 µg L-1 (phase IV). Samples of bioreactor influent and effluent were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The bioreactor removed organic matter (OM) and CAF with efficiencies of 88 and 93%, respectively. The first-order apparent removal constant (Kapp) values for OM and CAF were 0.419 and 0.304 h-1, respectively. Five transformation products (TPs) were identified, with m/z 243, 227, 211, and 181 (two products). The HAIB bioreactor is a suitable system for the removal of CAF present in wastewater, even at a concentration level of µg L-1.
Assuntos
Cafeína , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Biomassa , Cromatografia Líquida , Espectrometria de Massas em Tandem , Reatores BiológicosRESUMO
The degradation of three antibiotics (sulfamethoxazole, trimethoprim, and ofloxacin) and one synthetic hormone (17 α-ethinylestradiol) was investigated in three in-vitro biotransformation models (i.e., pure enzymes, hairy root, and Trichoderma asperellum cultures) for anticipating the relevance of the formation of transformation products (TPs) in constructed wetlands (CWs) bioaugmented with T. asperellum fungus. The identification of TPs was carried out employing high-resolution mass spectrometry, using databases, or by interpreting MS/MS spectra. An enzymatic reaction with ß-glucosidase was also used to confirm the presence of glycosyl-conjugates. The results showed synergies in the transformation mechanisms between these three models. Phase II conjugation reactions and overall glycosylation reactions predominated in hairy root cultures, while phase I metabolization reactions (e.g., hydroxylation and N-dealkylation) predominated in T. asperellum cultures. Following their accumulation/degradation kinetic profiles helped in determining the most relevant TPs. Identified TPs contributed to the overall residual antimicrobial activity because phase I metabolites can be more reactive and glucose-conjugated TPs can be transformed back into parent compounds. Similar to other biological treatments, the formation of TPs in CWs is of concern and deserves to be investigated with simple in vitro models to avoid the complexity of field-scale studies. This paper brings new findings on the emerging pollutants metabolic pathways established between T. asperellum and model plants, including extracellular enzymes.
RESUMO
This study investigates degradation processes of three antimicrobials in water (norfloxacin, ciprofloxacin, and sulfamethoxazole) by photolysis, focusing on the prediction of toxicity endpoints via in silico quantitative structure-activity relationship (QSAR) of their transformation products (TPs). Photolysis experiments were conducted in distilled water with individual solutions at 10 mg L-1 for each compound. Identification of TPs was performed by means of LC-TOF-MS, employing a method based on retention time, exact mass fragmentation pattern, and peak intensity. Ten main compounds were identified for sulfamethoxazole, fifteen for ciprofloxacin, and fifteen for norfloxacin. Out of 40 identified TPs, 6 have not been reported in the literature. Based on new data found in this work, and TPs already reported in the literature, we have proposed degradation pathways for all three antimicrobials, providing reasoning for the identified TPs. QSAR risk assessment was carried out for 74 structures of possible isomers. QSAR predictions showed that all 19 possible structures of sulfamethoxazole TPs are non-mutagenic, whereas 16 are toxicant, 18 carcinogenic, and 14 non-readily biodegradable. For ciprofloxacin, 28 out of the 30 possible structures for the TPs are mutagenic and non-readily biodegradable, and all structures are toxicant and carcinogenic. All 25 possible norfloxacin TPs were predicted mutagenic, toxicant, carcinogenic, and non-readily biodegradable. Results obtained from in silico QSAR models evince the need of performing risk assessment for TPs as well as for the parent antimicrobial. An expert analysis of QSAR predictions using different models and degradation pathways is imperative, for a large variety of structures was found for the TPs.
Assuntos
Anti-Infecciosos , Poluentes Químicos da Água , Anti-Infecciosos/toxicidade , Ciprofloxacina/toxicidade , Mutagênicos/química , Norfloxacino/toxicidade , Fotólise , Sulfametoxazol , Água , Poluentes Químicos da Água/análiseRESUMO
The current work assessed the degradation degree and the degradation products derived from norfloxacin (NOR) and gentamicin (GEN) using iodosylbenzene and iodobenzene diacetate, in the presence of manganese porphyrin as catalysts. Better results for NOR degradation (> 80%) were obtained when more hydrophobic porphyrins were employed. ß-brominated manganese porphyrins showed a lower GEN degradation (~ 25%) than the non-brominated ones (~ 35%), probably due to their steric hindrance. In any case, complete mineralization was achieved neither for NOR nor for GEN, and the assignment of the generated products, complemented by the study of their toxicity, was an important step performed. From the obtained results, no correlation was found between the number of identified products and the reported toxicity value (rSpearman,NOR = 0.006; p value = 0.986 and rSpearman,GEN = - 0,198; p value = 0.583), which reinforces the idea of synergism and antagonistic phenomena. The higher degradation degree could have led to products of lower steric hindrance and easier penetration into the A. fischeri cells, which subsequently led to an increase in toxicity for these experiments. In most cases, the products presented higher toxicity than the original compound, which raises a concern about their occurrence in environmental matrices.
Assuntos
Manganês , Porfirinas , Catálise , Gentamicinas , Norfloxacino , OxirreduçãoRESUMO
This study aimed to characterize the effect of amending soils with biochars derived from soybean residues, sugarcane bagasse, and wood chips on the sorption-desorption of indaziflam and indaziflam-triazinediamine (FDAT), indaziflam-triazine-indanone (ITI), and indaziflam-carboxylic acid (ICA) metabolites applied to soils from three Midwestern U.S. states, a silt loam and a silty clay loam. Biochars produced from different feedstock were used as soil amendments and compared with raw feedstock. Sorption-desorption experiments of indaziflam and its three metabolites were performed using the batch equilibration method and analyzed for 14C activity by liquid scintillation counting (radiometric technique). In all soils, the use of organic amendments promoted greater sorption and less desorption of indaziflam and ITI. The addition of biochar to soils promoted greater sorption of the four tested chemical products compared with the corresponding raw materials. Among the biochars, grape wood chips showed greater potential in sorb indaziflam and ITI. In general, none of the biochars affected the sorption and desorption of FDAT and ICA. Characterization of biochar to be used as a soil amendment (immobilizer) is highly recommended prior to field addition to optimize the sorption process and to prevent increased soil and water contamination of indaziflam and its metabolites following biochar addition.
Assuntos
Herbicidas , Poluentes do Solo , Adsorção , Carvão Vegetal , Herbicidas/análise , Indenos , Solo , Poluentes do Solo/análise , TriazinasRESUMO
Organic chemicals identified in raw landfill leachate (LL) and their transformation products (TPs), formed during Fenton treatment, were analyzed for chemical safety following REACH guidelines. The raw LL was located in the metropolitan region of Campina Grande, in northeast Brazil. We elucidated 197 unique chemical structures, including 154 compounds that were present in raw LL and 82 compounds that were detected in the treated LL, totaling 39 persistent compounds and 43 TPs. In silico models were developed to identify and prioritize the potential level of hazard/risk these compounds pose to the environment and society. The models revealed that the Fenton process improved the biodegradability of TPs. Still, a slight increase in ecotoxicological effects was observed among the compounds in treated LL compared with those present in raw LL. No differences were observed for aryl hydrocarbon receptor (AhR) and antioxidant response element (ARE) mutagenicity. Similar behavior among both raw and treated LL samples was observed for biodegradability; Tetrahymena pyriformis, Daphnia magna, Pimephales promelas and ARE, AhR, and Ames mutagenicity. Overall, our results suggest that raw and treated LL samples have similar activity profiles for all endpoints other than biodegradability.
Assuntos
Segurança Química , Poluentes Químicos da Água , Peróxido de Hidrogênio , Compostos Orgânicos , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Pharmaceuticals, such as dipyrone (DIP), paracetamol (PCT), and propranolol (PPN), are widely used analgesics and beta-blockers with the greatest presence in wastewaters and, consequently, in natural waters. The present work evaluated solar light-driven photocatalyst from petrochemical industrial waste (PW) as a strategy for the degradation of three pharmaceuticals in different water matrices (distilled water-DW, simulated wastewater-SWW, and real hospital wastewater-RHWW). All experiments were carried out in a solar photo-reactor with a capacity of 1 L and the experimental condition employed was a catalyst concentration of 350 mg L-1 at pH 5.0; these conditions were selected considering the Doehlert design validation spreadsheet and the desirability function. All materials prepared were conveniently characterized by zeta potential, small-angle X-ray scattering (SAXS), diffuse reflectance ultraviolet-visible (DRUV), and infrared spectroscopy. According to the results of the characterization, significant differences have been observed between the PW and the photocatalyst such as vibrational modes, optical absorption gap, and acid-basic characteristics on the surface, which suggests the potential use of the photocatalyst in the degradation of contaminants of emerging concern. Based on pharmaceutical degradation, DIP showed the highest photosensitivity (87.5%), and therefore the highest photocatalytic degradation followed by PPN; both compounds achieved final concentrations below the limit of quantification of the chromatographic method in DW. However, PCT was the most recalcitrant pharmaceutical in all matrices. Radicals from chromophoric natural organic matter (NOM) could improve PCT degradation in the SWW matrix (56%). Nevertheless, the results in RHWW showed a matrix effect with decreased the oxidation percentages (DIP-99%; PPN-71%; PCT-17%); hence, the addition of an oxidant such as H2O2 was studied as a pharmaceutical oxidation boost in RHWW. PPN was the molecule most sensitive to this strategy of oxidation (98%). Furthermore, 20 transformation products (TPs) generated throughout the treatment were identified by LC-QTOF MS using a customized TPs database. According to quantitative structure activity relationship (Q)SAR analysis, more than 75% of the TPs identified were not biodegradable. About 35% of them have oral toxicity characteristics indicated by Cramer's rules, and the DIP TPs represent high toxicity for different trophic levels.
Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Espalhamento a Baixo Ângulo , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Difração de Raios XRESUMO
In this work, the activated persulfate oxidation of ciprofloxacin (CIP) using a low-grade titanium ore under sunlight or simulated sunlight were conducted to analyze the CIP degradation efficiency and to identify the transformation products (TPs) generated during oxidation under both types of irradiation sources by using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). All advance oxidation process experiments were performed in a 2700-mL raceway reactor at a pH value of ~ 6.5 and an initial CIP concentration of 1 mg/L, during 90 min of reaction time. The control experiments carried out under simulated sunlight achieved a 97.7 ± 0.6% degradation efficiency, using 385 W/m2 of irradiation with an average temperature increase of 11.7 ± 0.6 °C. While, the experiments under sunlight reached a 91.2 ± 1.3% degradation efficiency, under an average irradiation value of 19.2 ± 0.3 W/m2 in October-November 2019 at hours between 11:00 am and 3:00 pm with an average temperature increase of 1.4 ± 0.8 °C. Mass spectrometry results indicated that 14 of the 108 possible TPs reported in the literature were detected. The calculated exact mass, measured accurate mass, and its characteristic diagnostic fragment ions were listed, and two new TPs were tentative identified. The TP generation analysis showed that some specific compounds were detected in different time intervals with kinetic variations depending on the irradiation used. Consequently, two CIP degradation pathways were proposed, since the type of irradiation determines the CIP degradation mechanism. Graphical abstract.
Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Cromatografia Líquida , Oxirredução , Luz Solar , Titânio , Poluentes Químicos da Água/análiseRESUMO
This work proposes a tube-in-tube membrane photoreactor, operated in a continuous-mode, to boost the efficiency of peroxydisulfate (PDS), through the photolytic (UV-C radiation) and photocatalytic (TiO2-P25) processes. This new technology can efficiently facilitate the transportation of PDS to the catalyst surface and water to be treated. The ultrafiltration tubular ceramic membrane was used as support for the TiO2-P25 and oxidant-catalyst/water contactor. Tests were performed using a synthetic solution and a municipal secondary effluent, both spiked with a pharmaceutical mix solution (paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP); 200 µg L-1 of each). At steady-state regime, the UVC/S2O82-/TiO2 system, with radial PDS addition, showed the highest removal of pharmaceuticals in both matrices. Furthermore, twenty-two transformation products (TPs) were identified by applying LC-QTOF MS technique. Hence, the transformation pathways including hydroxylation in aromatic moiety by an electrophilic attack, electron transfer reactions, cleavage of C-O, C-N bond, H-abstraction and ring opening were proposed. TPs chemical structures were evaluated by in silico (Q)SAR approach using TOXTREE and EPI Suite™ software.
Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Oxirredução , Sulfatos , Tecnologia , Raios Ultravioleta , Poluentes Químicos da Água/análiseRESUMO
Direct photolysis of the emerging contaminant 2-(thiocyanomethylthio) benzothiazole (TMCTB) was performed in aqueous solution at different concentrations with high-pressure mercury lamp (5.0, 8.0, 13.0, 16.0, 20.0, 23.0, 27.0, 35.0, 40.0, 45.0, and 50.0 mg L- 1) and with natural sunlight radiation (6.0, 30.0, and 60.0 mg L- 1). TCMTB underwent rapid degradation by direct photolysis with a high-pressure mercury lamp in aqueous solutions, with 99% removal after 30 min at all concentrations studied. For sunlight photolysis, TCMTB degradation was observed with 96%, 81%, and 64% removal for initial concentrations of 6.0, 30.0, and 60.0 mg L- 1, respectively, after 7 h of exposure to sunlight. The degradation of TCMTB in lab-scale wastewater had kinetic constant and t1/2 in the same order when compared to the photodegradation of TCMTB in aqueous solutions. In addition, the results showed that photolysis with a high-pressure mercury lamp and sunlight were governed by the same kinetic order, however the kinetic parameters showed that degradation with sunlight was 40 times slower than photolysis with the mercury lamp. Twelve transformation products (TP) were identified, and eight of the TP have not been described in the literature. Furthermore, prediction of toxicity with ECOSAR software was carried out for fish, daphnids, and green algae species. It showed that photolytic treatment is efficient for reducing the toxicity of the compound, since the degradation formed compounds with lower toxicity than the primary compound. In conclusion, this study suggests that photolysis is an efficient way to remove the studied contaminant, and it highlights the potential of this technique for the degradation of emerging contaminants in industrial wastewater treatment plants.
Assuntos
Benzotiazóis/metabolismo , Poluentes Químicos da Água/metabolismo , Cinética , Fotólise , Luz Solar , Água , Poluentes Químicos da Água/análiseRESUMO
Extensive use of endocrine disruptor compounds (EDCs) and their release through various pathways into the environment are emerging environmental concerns. In this context, H2O2 and chlorine UV-based treatments were carried out to evaluate their efficiency in the removal of the bisphenol A (BPA), 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) at 100 µg L-1 from ultrapure water and from wastewater treatment plants (WWTP). Photolysis was performed under different irradiation sources, i.e. UVC and UVA. The effect of H2O2 (3 and 30 mg·L-1), free chlorine concentrations (1 and 2 mg·L-1) and pH (5, 7 and 9) were also investigated. Toxicity (Raphidocelis subcapitata) and estrogenic activity (yeast estrogen screen - YES assay) were assessed during the processes. Compound removal at optimal operating parameters reached 100% after 15 and 2 min for UVC/H2O2 (pH 9 and 3 mg L-1 of H2O2), and UVC/Cl (pH 9 and 2 mg L-1 of chlorine), respectively. Total organic carbon (TOC) removal achieved 37% and 45% for the H2O2 and Cl-UV based process, respectively. The in vitro YES assay indicated that the formed by-products were non-estrogenic compounds, while the toxicity evaluation revealed high cell growth inhibition due to UVC/Cl byproducts. During the UV-based processes, 30 transformation products (TPs) were identified, in which three new chlorinated TPs from E2 and EE2 may be responsible for toxicity effects. EDC degradation by UV/Cl is faster than by UV/H2O2, although chlorinated toxic byproducts were also formed during the UV/Cl process.
Assuntos
Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Cloro , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Raios Ultravioleta , Águas ResiduáriasRESUMO
A tube-in-tube membrane reactor, with radial addition of hydrogen peroxide, was used for the oxidation of four pharmaceuticals, paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP), in a continuous-mode operation, using photochemical and photocatalytic processes, driven by UVA or UVC photons. This reactor allows a controlled titration of small H2O2 doses (inside-out mode) to the catalyst particles immobilized in the membrane shell side and to the annular space between the membrane inner tubing and the concentric outer quartz tubing, where water to be treated flows. Tests were performed using synthetic (SWW) and real (urban wastewater after secondary treatment) (UWW) matrices, both spiked with the pharmaceutical mix solution (200 µg L-1 of each). The photochemical and photocatalytic oxidation efficiency was evaluated as a function of H2O2 dose (5-20 mg L-1), oxidant injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC lamps) and aqueous matrix (synthetic vs real matrix). At steady-state regime, the UVC/H2O2/TiO2 system, with radial H2O2 addition (20 mg L-1), showed the highest pharmaceuticals removal percentage, PCT (27.4%), FRS (35.0%), NMD (24.2%) and DZP (30.0%) in SWW. A substantial decrease in pharmaceuticals elimination was observed for UWW (PCT - 11.5%, FRS - 20.3%, NMD - 8.2% and DZP - 12.6%), in comparison with the SWW matrix. Finally, twelve transformation products (TPs) were identified; most of them showed in their structures hydroxylation in aromatic moiety; all TPs chemical structures were evaluated by BIOWIN software indicating that the TPs are non-biodegradables.
Assuntos
Poluentes Químicos da Água/análise , Purificação da Água , Catálise , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Águas Residuárias/análiseRESUMO
The contamination by chlordecone (CLD) of soils and water in the French Caribbean (FC) has major environmental and human health impacts. In Situ Chemical Reduction (ISCR) is a promising method to degrade CLD but it generates transformation products (TPs). Here, the fate and transport of CLD and its TPs have been studied using three lysimeters, 65-70 cm-long and 20 cm in diameter, collected from a CLD contaminated nitisol in the FC. A simulated ISCR remediation process (Sim-ISCR) was applied to the top 15 cm layer. An equivalent of 9.8 years of effective rainfall was simulated during the 451 days of the experiments. CLD and seven TPs were analyzed in soils, soil pore waters and outflow waters of the lysimeters before and after the Sim-ISCR. CLD concentration in the soil pore waters increases with depth. In the Sim-ISCR treated layer, the CLD contamination was lowered by 41 to 47% in the soil and by 48 to 73% in the soil pore water. In the lysimeters outflow, however, the CLD concentration was lowered by only 13 to 25%, the flux of CLD from the untreated 50-55 cm of the profile concealing much of the beneficial impact of treating the top 15 cm. Remediating by ISCR the topsoil only will therefore not be sufficient for preventing further CLD contamination of the underlying groundwater. Sim-ISCR generated 5-hydroCLD in soils and waters and, to a much lesser extent, a trihydroCLD, a tetrahydroCLD, a pentahydroCLD and a heptahydroCLD. 5-hydroCLD is more mobile than CLD, but it still interacts strongly with the soil. The 5-hydroCLD values measured in the outflow were up to a factor of 4.4 lower than in the treated soil pore waters, indicating some natural attenuation.
RESUMO
The anti-cancer drug Flutamide (FLUT) is widely used and is of great environmental concern. The solar photo-Fenton (SPF) process can be an effective treatment for the removal of this type of micropollutant. The use of a single addition of 5 mg L-1 of Fe2+ and 50 mg L-1 of H2O2 achieved 20% primary degradation and only 3.05% mineralization. By using three additions of 5 mg L-1 Fe2+, with an initial H2O2 concentration of 150 mg L-1, 58% primary degradation was achieved, together with 12.07% mineralization. Consequently, thirteen transformation products (TPs) were formed. The SPF process was further combined with adsorption onto avocado seed activated carbon (ASAC) as an environmentally friendly approach for the removal of remained FLUT and the TPs. Doehlert design was used to assess the behavior of 13 TPs by optimizing the contact time and the adsorbent mass load. The optimal conditions for removal of FLUT and the TPs were 14 mg of ASAC and a contact time of 40 min. Remained FLUT and the TPs were totally removed using the adsorption process. The mechanisms of adsorption of FLUT and the TPs were strongly influenced by their polarity and π-π interactions of the TPs onto ASAC.
Assuntos
Antineoplásicos , Poluentes Químicos da Água , Adsorção , Flutamida , Hospitais , Peróxido de Hidrogênio , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
Flutamide (FLUT) is a non-steroidal drug mainly used in the treatment of prostate cancer and has been detected in the aquatic environment at ng L-1 levels. The environmental fate and effects of FLUT have not yet been studied. Conventional treatment technologies fail to completely remove pharmaceuticals, so the solar photo-Fenton process (SPF) has been proposed as an alternative. In this study, the degradation of FLUT, at two different initial concentrations in ultra-pure water, was carried out by SPF. The initial SPF conditions were pH0 5, [Fe2+]0 = 5 mg L-1, and [H2O2]0 = 50 mg L-1. Preliminary elimination rates of 53.4% and 73.4%. The kinetics of FLUT degradation could be fitted by a pseudo-first order model and the kobs were 6.57 × 10-3 and 9.13 × 10-3 min-1 t30W and the half-life times were 95.62 and 73.10 min t30W were achieved for [FLUT]0 of 5 mg L-1 and 500 µg L-1, respectively. Analysis using LC-QTOF MS identified thirteen transformation products (TPs) during the FLUT degradation process. The main degradation pathways proposed were hydroxylation, hydrogen abstraction, demethylation, NO2 elimination, cleavage, and aromatic ring opening. Different in silico (quantitative) structure-activity relationship ((Q)SAR) freeware models were used to predict the toxicities and environmental fates of FLUT and the TPs. The in silico predictions indicated that these substances were not biodegradable, while some TPs were classified near the threshold point to be considered as PBT compounds. The in silico (Q)SAR predictions gave positive alerts concerning the mutagenicity and carcinogenicity endpoints. Additionally, the (Q)SAR toolbox software provided structural alerts corresponding to the positive alerts obtained with the different mutagenicity and carcinogenicity models, supporting the positive alerts with more proactive information.
Assuntos
Antineoplásicos , Flutamida , Poluentes Químicos da Água , Flutamida/química , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Medição de RiscoRESUMO
Several studies have been conducted worldwide to develop effective and affordable methods to degrade pharmaceuticals and their metabolites/intermediates/oxidation products found in surface water, wastewater and drinking water. In this work, acetaminophen and its transformation products were successfully degraded in surface water by electrochemical oxidation using stainless steel electrodes. The effect of pH and current density on the oxidation process was assessed and the oxidation kinetics and mechanisms involved were described. Additionally, the results were compared with those obtained in acetaminophen synthetic solutions. It was found that conducting the electrochemical oxidation at 16.3 mA/cm2 and pH 5, good performance of the process was achieved and not only acetaminophen, but also its transformation products were totally degraded in only 7.5 min; furthermore, small number of transformation products were generated. On the other hand, degradation rates of acetaminophen and its transformation products in surface water were much faster (more than 2.5 times) and the reaction times much shorter (more than 4.0 times) than in synthetic solutions at all current densities and pH values evaluated. At pH 3 and pH 5, greater soluble chlorine formation due to the higher HCl amount used to acidify the surface water solutions could enhance the degradation rates of acetaminophen and its transformation products. However, constituents of surface water (ions and solids) could also have an important role on the oxidation process because at pH 9 (non-acidified solutions) the degradation rates were also much greater and the reaction times were much shorter in surface water than in acetaminophen synthetic solutions.
RESUMO
The aim of this work is to study the byproducts formed as a result of the photocatalytic process under different conditions of light wavelength and photocatalyst doping, rendering valuable information about the fate of pollutants for water treatment applications. Salicylic acid was selected as a model emerging pollutant and powders of nitrogen-doped titanium dioxide (N-TiO2) and TiO2 were prepared by the sol-gel process, using TiO2 P-25 Degussa as benchmark. Two light sources, UVA fluorescent tubes (372 nm) and blue LEDs (462 nm), were employed for photolysis and photocatalysis experiments. Transformation products formed during the process were studied by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Major differences were found in the amount and identity of the transformation products due to the different light sources, detecting similar transformation products among the studied catalysts. Under UVA light, hydroxylated and carbonylated byproducts were the first intermediates to reach maximum abundances whereas presumed ring opening products were the last ones. On the other hand, under blue LED illumination byproducts accumulated with decreased mineralization. Photocatalytic degradation pathways were proposed based on the findings.
Assuntos
Poluentes Químicos da Água , Água , Catálise , Espectrometria de Massas , Fotólise , Ácido Salicílico , TitânioRESUMO
The Water Framework Directive 2000/60/EC implemented by the European Union established as the main objectives to achieve a "good ecological and chemical status" of the surface water and a "good quantitative and chemical status" of groundwater bodies. One of the major pressures affecting water bodies comes from the use of pesticides and their potential presence in the water ecosystems. For this purpose, the reliable determination of pesticides and their transformation products (TPs) in natural waters (both surface and groundwater) is required. The high number of compounds potentially reaching the aquatic environment makes extraordinary difficult, if not impossible, to investigate all these compounds even using the most powerful analytical techniques. Among these, liquid chromatography coupled to high-resolution mass spectrometry is emphasized due to its strong potential for detection and identification of many organic contaminants thanks to the accurate-mass full spectrum acquisition data. This work focuses on wide-scope screening of many pesticides and their TPs in surface water and groundwater samples, collected between March and May 2017, in the Júcar River Hydrographical Basin, Spain. For this purpose, a home-made database containing more than 500 pesticides and TPs was employed. Analyses performed by liquid chromatography coupled to quadrupole-time of flight mass spectrometry (LC-QTOF MS) allowed the identification of up to 27 pesticides and 6â¯TPs. The most detected compounds in groundwater were the herbicides atrazine, simazine, terbuthylazine, and their TPs (atrazine-desethyl, terbumeton-desethyl and terbuthylazine-desethyl). Regarding surface water, the fungicides carbendazim, thiabendazole and imazalil, the herbicide terbutryn and the TP terbumeton-desethyl were also detected. These results illustrate the wide use of these compounds (in the present or in the recent past) in the area under study and the vulnerability of the water bodies, and are in accordance with previous findings in other water bodies of the different Spanish Hydrographic systems.
Assuntos
Monitoramento Ambiental , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Espectrometria de Massas , EspanhaRESUMO
Water pollution by pesticides and other chemical contaminants is a subject of major importance due to the risk for human health and the environment. The search for remediation processes able to withdraw chemical contaminants from water and to allows water reuse is an urgent need. Herein, a simple and cheap system for pesticides removal was constructed and evaluated using water samples contaminated with two widely used herbicides (imazapic and imazethapyr, at g L-1 level). Operation parameters and process efficiency, in terms of removal rate in the reclaimed water and degradation rate of pesticides in the dry residue, were quantitatively determined. The model was tested in real-world field experiments and was able to remove more than 99.95% of both contaminants from a 10â¯L solution containing 4.16⯱â¯0.94â¯g of imazethapyr and 1.31⯱â¯0.17â¯g of imazapic, generating reusable water with minimum volume loss (<2.5%). Liquid chromatography coupled to mass spectrometry was used to determine the herbicides content in all samples and to estimate the degree of degradation of the substances as well as the occurrence of transformation products of imazapic and imazethapyr. The system efficiency in removing contaminants of emerging concern from surface water was also evaluated. The process have generated output water with undetected levels for two fungicides present in a local river in Southern Brazil.