Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 250-255, 2023.
Article in Chinese | WPRIM | ID: wpr-971441

ABSTRACT

Objective: To investigate the efficacy of the first-day suspension method for improving the success rate of construction of nasopharyngeal carcinoma-patient derived organoids (NPC-PDO). Methods: The tumor samples of 14 nasopharyngeal carcinoma(NPC) patients, i.e.,13 males and 1 female, with a mean age of 43.0±12.0 years old, were collected from the Affiliated Tumor Hospital of Guangxi Medical University and the First Affiliated Hospital of Guangxi Medical University from January 2022 to July 2022. The tumor samples of 3 patients were digested into single cell suspension and divided into 2 groups, for comparing the efficacy of NPC-PDO construction by the direct inoculation method and the first-day suspension method. The remaining 11 patients were randomized to receive either the direct inoculation method or the first-day suspension method for NPC-PDO construction. The diameter and the number of spheres of NPC-PDO constructed by the two methods were compared by optical microscope; the 3D cell viability detection kit was used to compare the cell viability; the survival rates were compared by trypan blue staining; the success rates of the two construction methods were compared; the number of cases which could be successfully passaged for more than 5 generations and were consistent with the original tissue by pathological examination was counted; and the dynamic changes of cells in suspension overnight were observed by live cell workstation. The independent sample t-test was applied to compare the measurement data of the two groups, and the chi-square test was used to compare the classification data. Results: Compared with the direct inoculation, the diameter and the number of spheres of NPC-PDO constructed by the first-day suspension method were increased, with a higher cell activity, and the success rate of construction was obviously improved (80.0% vs 16.7%, χ2=4.41, P<0.05). In the suspension state, some of the cells aggregated and increased their ability to proliferate. Conclusion: The first-day suspension method can improve the success rate of NPC-PDO construction, especially for those whose original tumor sample size is small.


Subject(s)
Male , Humans , Female , Adult , Middle Aged , Nasopharyngeal Carcinoma , China , Microscopy , Organoids , Nasopharyngeal Neoplasms
2.
Journal of Experimental Hematology ; (6): 233-240, 2023.
Article in Chinese | WPRIM | ID: wpr-971130

ABSTRACT

OBJECTIVE@#To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology.@*METHODS@#20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings.@*RESULTS@#The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased.@*CONCLUSION@#The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.


Subject(s)
Mice , Female , Animals , Mice, Inbred C57BL , Bone Marrow Transplantation , Graft vs Host Disease , Stem Cells , Organoids
3.
Chinese Journal of Biotechnology ; (12): 318-336, 2023.
Article in Chinese | WPRIM | ID: wpr-970377

ABSTRACT

Olfactory epithelium, which detects and transmits odor signals, is critical for the function of olfactory system. Olfactory epithelium is able to recover spontaneously after injury under normal circumstances, but this ability is dampened in certain diseases or senility, which causes olfactory dysfunction. The olfactory epithelium consists of basal cells, sustentacular cells and olfactory sensory neurons. In order to develop an olfactory epithelial organoid containing multiple olfactory cell types in vitro, we used three-dimensional culture model and small molecules screening. This organoid system consists of horizontal basal-like cells, globose basal-like cells, sustentacular-like cells and olfactory sensory neurons-like cells. Through statistical analysis of clone diameter, immunofluorescence staining and qPCR detection of the expression level of related marker genes. We identified a series of growth factors and small molecule compounds that affected the proliferation, composition and gene expression of the organoids. CHIR-99021, an activator of Wnt signaling pathway, increased the colony formation and proliferation rate of olfactory epithelial organoids and the expression level of marker genes of olfactory sensory neurons-like cells. In addition, each factor in the culture system increased the proportion of c-Kit-positive globose basal-like cell colonies in organoids. Moreover, EGF and vitamin C were both beneficial to the expression of horizontal basal-like cell marker genes in organoids. The established olfactory epithelial organoid system mimicked the process of olfactory epithelial stem cells differentiating into various olfactory epithelial cell types, thus providing a research model for studying olfactory epithelial tissue regeneration, the pathological mechanism of olfactory dysfunction and drug screening for olfactory dysfunction treatment.


Subject(s)
Humans , Olfactory Mucosa/metabolism , Epithelial Cells , Organoids/metabolism , Olfaction Disorders/metabolism
4.
Chinese Journal of Biotechnology ; (12): 1332-1350, 2023.
Article in Chinese | WPRIM | ID: wpr-981141

ABSTRACT

Organoid is a newly developed cellular there-dimensional culture system in recent years. Organoids have a three-dimensional structure, which is similar to that of the real organs. Together with the characteristics of self-renewal and reproduction of tissue origin, organoids can better simulate the function of real organs. Organoids provide a new platform for the study of organogenesis, regeneration, disease pathogenesis, and drug screening. The digestive system is an essential part of the human body and performs important functions. To date, organoid models of various digestive organs have been successfully established. This review summarizes the latest research progress of organoids of taste buds, esophagi, stomachs, livers and intestines, and prospects future application of organoids.


Subject(s)
Humans , Organoids , Intestines , Liver
5.
Article in Portuguese | LILACS | ID: biblio-1511478

ABSTRACT

Há muitos anos a cultura celular bidimensional (2D) é utilizada como modelo de estudo de doenças, possuindo grande importância na medicina regenerativa, apesar de ainda conter limitações significativas. A fim de contornar essas limitações, a cultura celular tridimensional (3D) propõe uma organização mais complexa e sustentável que pode ser produzida a partir de células-tronco adultas (ASCs), células-tronco embrionárias (ESCs) ou células-tronco pluripotentes induzidas (iPSCs). A cultura 3D possibilitou o cultivo de células em um ambiente mais próximo do fisiológico, levando à formação de distintos tecidos órgãos-específicos. Em outras palavras, a cultura de células 3D possibilita a criação de estruturas orgânicas muito semelhantes aos órgãos de um ser humano, tanto estruturalmente, quanto funcionalmente. Desse modo, tem-se o que é chamado de organoides. O uso dos organoides tem crescido exponencialmente em ambientes in vitro, permitindo a análise e observação dos diversos fenômenos fisiológicos existentes. Como exemplo, pode-se citar os organoides cerebrais ("mini-brains") reproduzidos in vitro buscando delinear as peculiaridades e complexidades do cérebro humano, com o objetivo de compreender algumas disfunções neurológicas que acometem esse sistema, como as duas principais doenças neurodegenerativas: Doenças de Alzheimer e Parkinson. Portanto, os organoides cerebrais podem permitir notável avanço da medicina regenerativa aplicada a doenças neurodegenerativas, já que esses "mini-brains" podem ser produzidos a partir de células do próprio paciente. Isso permitirá intervenções personalizadas, como testagens farmacológicas, a fim de definir qual seria o melhor tratamento medicamentoso. Consequentemente, essa tecnologia pode permitir terapias mais eficientes e individualizadas - o que é fundamental para a Medicina Personalizada (AU).


For many years, two-dimensional (2D) cell culture has been used as a model to study diseases, having great importance in regenerative medicine, despite still having significant limitations. In order to circumvent these limitations, three-dimensional (3D) cell culture proposes a more complex and sustainable organization that can be produced from adult stem cells (ASCs), embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). The 3D culture enabled the cultivation of cells in an environment closer to the physiological one, leading to the formation of different organ-specific tissues. In other words, 3D cell culture makes it possible to create organic structures very similar to the organs of a human being, both structurally and functionally. In this way, we have what are called organoids. The use of organoids has grown exponentially in in vitro environments, allowing the analysis and observation of the various existing physiological phenomena. As an example, we can mention the brain organoids ("mini-brains") reproduced in vitro, seeking to delineate the peculiarities and complexities of the human brain, in order to understand some neurological dysfunctions that affect this system, such as the two main neurodegenerative diseases: Alzheimer's and Parkinson's Diseases. Therefore, brain organoids may allow a remarkable advance in regenerative medicine applied to neurodegenerative diseases, as these "mini-brains" can be produced from the patient's own cells. This will allow for personalized interventions, such as drug testing, in order to define what would be the best drug treatment. Consequently, this technology can enable more efficient and individualized therapies - which is fundamental for Personalized Medicine (AU).


Subject(s)
Humans , Parkinson Disease , Organoids , Concierge Medicine
6.
Chinese Journal of Oncology ; (12): 464-470, 2023.
Article in Chinese | WPRIM | ID: wpr-984745

ABSTRACT

Conventional tumor culture models include two-dimensional tumor cell cultures and xenograft models. The former has disadvantages including lack of tumor heterogeneity and poor clinical relevance, while the latter are limited by the slow growth, low engraftment successful rate, and high cost. In recent years, in vitro three-dimensional (3D) tumor models have emerged as the tool to better recapitulate the spatial structure and the in vivo environment of tumors. In addition, they preserve the pathological and genetic features of tumor cells and reflect the complex intracellular and extracellular interactions of tumors, which have become a powerful tool for investigating the tumor mechanism, drug screening, and personalized cancer treatment. 3D tumor model technologies such as spheroids, organoids, and microfluidic devices are maturing. Application of new technologies such as co-culture, 3D bioprinting, and air-liquid interface has further improved the clinical relevance of the models. Some models recapitulate the tumor microenvironment, and some can even reconstitute endogenous immune components and microvasculature. In recent years, some scholars have combined xenograft models with organoid technology to develop matched in vivo/in vitro model biobanks, giving full play to the advantages of the two technologies, and providing an ideal research platform for individualized precision therapy for specific molecular targets in certain subtypes of tumors. So far, the above technologies have been widely applied in the field of colorectal cancer research. Our research team is currently studying upon the application of patient-derived tumor cell-like clusters, a self-assembly 3D tumor model, in guiding the selection of postoperative chemotherapy regimens for colorectal cancer. A high modeling success rate and satisfactory results in the drug screening experiments have been achieved. There is no doubt that with the advancement of related technologies, 3D tumor models will play an increasingly important role in the research and clinical practice of colorectal cancer.


Subject(s)
Humans , Organoids/pathology , Cell Culture Techniques , Colorectal Neoplasms/pathology , Tumor Microenvironment
7.
Rev. peru. med. exp. salud publica ; 39(2): 227-235, abr.-jun. 2022. tab, graf
Article in Spanish | LILACS | ID: biblio-1395048

ABSTRACT

RESUMEN Los organoides son estructuras miniaturizadas, generadas principalmente a partir de células madre pluripotentes inducidas, que se cultivan en el laboratorio conservando sus características innatas o adquiridas. Tienen el potencial de reproducir procesos de desarrollo biológico, modelar procesos patológicos que permitirán el descubrimiento de nuevos fármacos y propicien la medicina regenerativa. Sin embargo, estas experiencias requieren perfeccionamiento constante porque pueden haberse realizado variaciones en la constitución de estos órganos. Por ello, el presente artículo tiene como objetivo revisar la información actualizada sobre organoides y sus procesos experimentales básicos y recientes, empezando por la gastrulación, para tratar de imitar, en lo posible, la formación de las tres capas: ectodermo, mesodermo y endodermo, incluyendo los factores que intervienen en la inducción, diferenciación y maduración en la generación de estos organoides. Asimismo, el diseño y preparación de medios de cultivo altamente especializados que permitan obtener el órgano seleccionado con la mayor precisión y seguridad. Se realizó una búsqueda de artículos originales y de revisión publicados en PubMed, Nature y Science. Los artículos se seleccionaron por sus resúmenes y por su texto completo. Las conclusiones de este articulo destacan las ventajas futuras en el uso y aplicaciones de los organoides.


ABSTRACT Organoids are tiny structures, mainly generated from induced pluripotent stem cells, which are cultured in the laboratory while retaining their innate or acquired characteristics. They have the potential to reproduce biological development processes, model pathological processes that will enable the discovery of new drugs and promote regenerative medicine. However, these processes require constant improvement because variations may have occurred in the constitution of the organs. Therefore, this article aims to review updated information on organoids and their basic and recent experimental processes, starting with gastrulation, in an attempt to mimic, as much as possible, the formation of the three layers: ectoderm, mesoderm and endoderm; as well as the information regarding the factors involved in the induction, differentiation and maturation during the generation of organoids. Likewise, the design and preparation of highly specialized culture media that allow obtaining the selected organ with the highest precision and safety. We searched for original and review articles published in PubMed, Nature and Science. Articles were selected for their abstracts and full text. The conclusions of this article highlight the future advantages in the use and applications of organoids.


Subject(s)
Organoids , Signal Transduction , Cell Differentiation , Gastrulation , Induced Pluripotent Stem Cells
8.
Chinese Journal of Hepatology ; (12): 244-248, 2022.
Article in Chinese | WPRIM | ID: wpr-935935

ABSTRACT

Liver is one of the most important organs in the human body. Liver diseases are also a major threat to human health and longevity. Hepatic decompensation treatment is quite difficult due to multiple reasons. Extracorporeal liver support devices are unable to solve this problem, and there is a severe shortage of orthotopic liver transplant donors. Study of pluripotent stem cell-derived hepatocytes and organoids can determine not only hepatocyte fate, but also liver development, regeneration mechanisms, and pathophysiology. Furthermore, it can be used for drug screening in order to provide a stable source of functional hepatocytes for future transplantation therapy. Culture of pluripotent stem cell-derived hepatocytes and organoids has a self-organizing process similar to liver development, i.e., starting with changes in several key factors, and eventually forming functionally complex cells/organs. This paper introduces the main methods and progress of pluripotent stem cell-derived hepatocytes and organoids, with hope to provide clues for future research.


Subject(s)
Humans , Cell Differentiation , Hepatocytes , Induced Pluripotent Stem Cells , Liver , Organoids , Pluripotent Stem Cells
9.
Chinese Journal of Stomatology ; (12): 535-539, 2022.
Article in Chinese | WPRIM | ID: wpr-935898

ABSTRACT

Salivary glands are important organs in the oral and maxillofacial region. Environment and genetic factors may cause salivary gland tumors or non-neoplastic diseases, but the mechanisms of those diseases are still unclear. One of the important reasons is the short of researching media and model. As a new technique and research model, organoids have been widely used in the research of various diseases. Organoid culture plays a bridging role between two-dimensional cell culture and living animal models, and it is also the most promising translational research model that could connect the clinical research to basic research. This review will discuss the recent development of organoid techniques in the culture of normal salivary glands and salivary gland tumors, also their applications and challenges in tissue engineering, etiological research, and tumor therapy.


Subject(s)
Animals , Cell Culture Techniques , Organoids , Salivary Gland Neoplasms , Salivary Glands , Tissue Engineering
10.
Protein & Cell ; (12): 239-257, 2022.
Article in English | WPRIM | ID: wpr-929163

ABSTRACT

Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.


Subject(s)
Humans , COVID-19 , Diabetes Mellitus/therapy , Islets of Langerhans , Organoids , SARS-CoV-2
11.
Chinese Medical Journal ; (24): 324-332, 2022.
Article in English | WPRIM | ID: wpr-927534

ABSTRACT

BACKGROUND@#Sweat secreted by eccrine sweat glands is transported to the skin surface through the lumen. The eccrine sweat gland develops from the initial solid bud to the final gland structure with a lumen, but how the lumen is formed and the mechanism of lumen formation have not yet been fully elucidated. This study aimed to investigate the mechanism of lumen formation of eccrine gland organoids (EGOs).@*METHODS@#Human eccrine sweat glands were isolated from the skin for tissue culture, and the primary cultured cells were collected and cultured in Matrigel for 14 days in vitro. EGOs at different development days were collected for hematoxylin and eosin (H&E) staining to observe morphological changes and for immunofluorescence staining of proliferation marker Ki67, cellular motility marker filamentous actin (F-actin), and autophagy marker LC3B. Western blotting was used to detect the expression of Ki67, F-actin, and LC3B. Moreover, apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay kit, and the expression of poly (ADP-ribose) polymerase and Caspase-3 was detected by Western blot. In addition, 3-methyladenine (3MA) was used as an autophagy inhibitor to detect whether the formation of sweat glands can be effectively inhibited.@*RESULTS@#The results showed that a single gland cell proliferated rapidly and formed EGOs on day 4. The earliest lumen formation was observed on day 6. From day 8 to day 14, the rate of lumen formation in EGOs increased significantly. The immunofluorescence and Western blot analyses showed that the expression of Ki67 gradually decreased with the increase in days, while the F-actin expression level did not change. Notably, the expression of autophagy marker LC3B was detected in the interior cells of EGOs as the apoptosis signal of EGOs was negative. Compared with the control group, the autophagy inhibitor 3MA can effectively limit the formation rate of the lumen and reduce the inner diameter of EGOs.@*CONCLUSION@#Using our model of eccrine gland 3D-reconstruction in Matrigel, we determined that autophagy rather than apoptosis plays a role in the lumen formation of EGOs.


Subject(s)
Humans , Apoptosis , Autophagy , Eccrine Glands , Epithelial Cells , Organoids
12.
Journal of Southern Medical University ; (12): 868-877, 2022.
Article in Chinese | WPRIM | ID: wpr-941015

ABSTRACT

OBJECTIVE@#To establish a culture system for human nasal mucosal organoids with controllable differentiation to reproduce the structure and function of the source tissue through staged expansion-differentiation culture.@*METHODS@#Fresh samples of surgically resected middle turbinate and nasal polyp tissues were collected, from which the nasal mucosa epithelial cells were isolated by enzymatic digestion and filtration for continuous culture at the air-liquid interface for expansion (EO group) or staged culture for expansion and differentiation (DO group). Immunohistochemical staining was used to characterize the structure, cellular composition and ciliary function of nasal mucosal organoids in the two groups. The secretion function of the differentiated nasal mucosal organoids in DO group was evaluated using PAS staining.@*RESULTS@#Both of the two organoid culture systems yielded vacuolar or solid spherical 3D organoids, and their diameters increased progressively with time. On day 16 of culture, more vacuolar organoids occurred in DO group, while more solid spherical organoids were seen in EO group, and the proportion of vacuoles was significantly greater in DO group than in EO group [(54.67±13.26)% vs (21.67±8.57)%, P < 0.05]. Short tandem repeat (STR) test of the nasal mucosal organoids and the source tissue showed a 100% match between them. On day 21 of culture, scanning and transmission electron microscopy of the nasal mucosal organoids identified ultrastructure of cilia in DO group and short villi structure in most of the organoids in EO group. Immunohistochemical staining showed positivity for P63 (basal cells), β-tubulin (ciliated columnar cells), and MUC5AC (goblet cells) in the organoids. Compared with those in EO group, the organoids in DO group showed significantly greater percentages of ciliated cells [(7.95±1.81)% vs (27.04±5.91)%, P < 0.05] and goblet cells [(14.46±0.93)% vs (39.85±5.43)%, P < 0.05) with a similar percentage of basal cells [(56.91±14.12)% vs (53.42±15.77)%, P > 0.05]. The differentiated nasal mucosal organoids in DO group were positively stained for glycogen.@*CONCLUSION@#The staged expansion-differentiation culture method allows more stable and prolonged growth of the cultured cells in vitro to produce organoids with controllable differentiation closely resembling the morphological structure and functions (ciliary function and secretory function) of the source tissue.


Subject(s)
Humans , Cell Differentiation , Cells, Cultured , Epithelial Cells , Nasal Mucosa , Organoids
13.
Journal of Zhejiang University. Science. B ; (12): 564-577, 2022.
Article in English | WPRIM | ID: wpr-939827

ABSTRACT

Organoid models are used to study kidney physiology, such as the assessment of nephrotoxicity and underlying disease processes. Personalized human pluripotent stem cell-derived kidney organoids are ideal models for compound toxicity studies, but there is a need to accelerate basic and translational research in the field. Here, we developed an automated continuous imaging setup with the "read-on-ski" law of control to maximize temporal resolution with minimum culture plate vibration. High-accuracy performance was achieved: organoid screening and imaging were performed at a spatial resolution of 1.1 μm for the entire multi-well plate under 3 min. We used the in-house developed multi-well spinning device and cisplatin-induced nephrotoxicity model to evaluate the toxicity in kidney organoids using this system. The acquired images were processed via machine learning-based classification and segmentation algorithms, and the toxicity in kidney organoids was determined with 95% accuracy. The results obtained by the automated "read-on-ski" imaging device, combined with label-free and non-invasive algorithms for detection, were verified using conventional biological procedures. Taking advantage of the close-to-in vivo-kidney organoid model, this new development opens the door for further application of scaled-up screening using organoids in basic research and drug discovery.


Subject(s)
Humans , Kidney , Organoids , Pluripotent Stem Cells
14.
Chinese Journal of Biotechnology ; (12): 395-403, 2021.
Article in Chinese | WPRIM | ID: wpr-878570

ABSTRACT

Breast cancer is the most common cancer in women. At present, the in vivo model and traditional cell culture are mainly used in breast cancer researches. However, as high as 90% clinical trials are failed for drugs explored by the above two methods, due to the inherent species differences between humans and animals, as well as the differences in the tissue structure between organs and cells. Therefore, organoid three-dimensional culture is emerging. As a new tumor research model, organoid, a three-dimensional cell complex with spatial structure, has broad application prospects, such as precision medicine, organ transplantation, establishment of refractory disease model, gene therapy and drug research and development. Therefore, organoid is considered as one of the ideal carriers for life science research in the future. Breast cancer, a heterogeneous disease with complex phenotypes, has a low survival rate. Breast cancer organoid can reproduce many key features of human breast cancer, thus, the construction of organoid biological library of breast cancer will provide a new platform for studying the occurrence, development, metastasis and drug resistance mechanism of breast cancer. In this review, we systematically introduce the culture conditions of organoids and their application in breast cancer related research, and the application prospect of organoids.


Subject(s)
Animals , Female , Humans , Breast Neoplasms , Cell Culture Techniques , Organoids , Precision Medicine , Research
15.
Acta Physiologica Sinica ; (6): 181-196, 2021.
Article in English | WPRIM | ID: wpr-878247

ABSTRACT

Organoids are self-organized cellular clusters in three-dimensional culture, which can be derived from a single stem cell, progenitor or cell clusters of different lineages resembling in vivo tissue architecture of an organ. In the recent years, organoids technology has contributed to the revolutionary changes in stem cell and cancer fields. In this review, we have briefly overviewed the emerging landscape of prostate organoid technology (POT) in prostate research. In addition, we have also summarized the potential application of POT in the understanding of prostate stem cell and cancer biology and the discovery of novel therapeutic strategies for prostate cancer. Lastly, we have critically discussed key challenges that lie in the current state of POT and provided a future perspective on the second-generation of POT, which should better recapitulate cellular behaviors and drug responses of prostate cancer patients.


Subject(s)
Humans , Male , Gold , Neoplasms , Organoids , Prostate , Stem Cells , Technology
16.
Acta Physiologica Sinica ; (6): 509-517, 2021.
Article in Chinese | WPRIM | ID: wpr-887686

ABSTRACT

Organoid, formed from organ-specific cells, is a group of self-renewal and self-organizing cells growing in a 3-dimensional structure. With the recent progress on microenvironment regulation, stem cell differentiation and organ development, organoids have been constructed and used as promising tools for a wide range of multidisciplinary biomedical applications. Exercise disrupts the internal environment homeostasis, which brings a series of physiological alterations to the digestive system. The current animal or human models are necessary, but not sufficient to monitor the fluctuating microenvironment of gastrointestinal epithelial cells or hepatocytes during exercise. This review described the construction and application of digestive system organoids, as well as the effect of exercise on the microenvironment of intestinal epithelial cells and hepatocytes. The perspective applications of digestive system organoids in exercise physiology were also stated. Using organoid technologies, the possible mechanisms of the exercise-induced dynamic physiological changes would be explored in a new dimension.


Subject(s)
Animals , Humans , Cell Differentiation , Epithelial Cells , Hepatocytes , Intestines , Organoids
17.
Chinese Journal of Gastrointestinal Surgery ; (12): 638-643, 2021.
Article in Chinese | WPRIM | ID: wpr-942937

ABSTRACT

Intestinal organoids, also named "mini-guts", reconstitute sophisticated three-dimensional architecture recapitulating diversified intestinal epithelial cell types and physiology, which is driven by the proliferative and self-assembling characteristics of crypt stem cells. The initiation of organoids study relies on the identification of Lgr5+ crypt stem cells from different intestinal segments and the key role of EGF, Wnt, BMP/TGF-β, Notch signal pathways within the microenvironment during the cultivation process. Besides constituting polarized crypt-villus structures, these "mini-guts" exhibit various effective functions of intestinal epithelium. Since 2009 when the culture system of small intestinal organoids was established by Sato et al, intestinal organoids excel conventional intestinal models depending on genetical mutation in multiple aspects and thus have become the hotspot among the research on intestinal diseases. Combined with genomics, material science and engineering, "mini-guts" have been widely applied to the research on intestinal development, intestinal transport physiology, epithelial barrier, pathogen-host interaction and the study on cystic fibrosis, infectious diarrhea, ulcerative colitis, Crohn's disease, intestinal cancer, etc. In this review, we summarize the new insights introduced by organoid into the research on intestinal diseases, and related research advances and applications.


Subject(s)
Humans , Intestinal Mucosa , Intestinal Neoplasms , Intestines , Organoids , Stem Cells , Tumor Microenvironment
18.
Acta cir. bras ; 36(11): e361102, 2021. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1456245

ABSTRACT

Purpose: This study aimed to develop a microsurgical technique to transplant extremely fragile renal organoids in vivo, created by in-vitro reaggregation of metanephros from fetal mice. These organoids in reaggregation and development were examined histologically after transplantation under the renal capsule. Methods: Initially, metanephros from fetal mice were enzymatically treated to form single cells, and spheroids were generated in vitro. Under a microscope, the renal capsule was detached to avoid bleeding, and the outer cylinder of the indwelling needle was inserted to detach the renal parenchyma from the renal capsule using water pressure. The reaggregated spheroid was aspirated from the culture plate using a syringe with an indwelling needle outer cylinder and carefully extruded under the capsule. Pathological analysis was performed to evaluate changes in reaggregated spheroids over time and the effects of co-culture of spinal cord and subcapsular implantation on maturation. Results: In vitro, the formation of luminal structures became clearer on day 5. These fragile organoids were successfully implanted without tissue crapes under the renal capsule and formed glomerular. The effect of spinal cord co-transplant was not obvious histrionically. Conclusions: A simple and easy method to transplant fragile spheroids and renal under the renal capsule without damage was developed.


Subject(s)
Animals , Mice , Spinal Cord , Organoids/transplantation , Kidney/transplantation , Fetal Tissue Transplantation/methods , Cell Aggregation , Microsurgery
19.
Chinese Journal of Biotechnology ; (12): 3961-3974, 2021.
Article in Chinese | WPRIM | ID: wpr-921479

ABSTRACT

Novel model systems have provided powerful tools for the research of human biology. Despite of being widely used, the conventional research models could not precisely describe the human physiological phenomenon. Organoids are three-dimensional multicellular aggregates derived from stem cells or organ progenitors that could differentiate and self-organize to recapitulate some specific functionalities and architectures of their in vivo counterpart organs. Organoids can be used to simulate organogenesis because of their human origin. In addition, the genomic stability of organoids could be well maintained during long-term amplification in vitro. Moreover, organoids can be cryopreserved as a live biobank for high-throughput screening. Combinatorial use of organoids with other emerging technologies (e.g. gene editing, organ-on-a-chip and single-cell RNA sequencing) could overcome the bottlenecks of conventional models and provide valuable information for disease modelling, pharmaceutical research, precision medicine and regenerative medicine at the organ level. This review summarizes the classifications, characteristics, current applications, combined use with other technologies and future prospects of organoids.


Subject(s)
Humans , Gene Editing , Models, Biological , Organoids , Regenerative Medicine , Stem Cells
20.
Chinese Journal of Biotechnology ; (12): 3945-3960, 2021.
Article in Chinese | WPRIM | ID: wpr-921478

ABSTRACT

The thymus is a pivotal immune organ of the human body, and it is the place where T cells differentiate and mature. The damage of thymus would easily induce autoimmune diseases and even malignant tumors. For years, researchers have been exploring the process of T cell development and revealing the mechanism of thymic injury and regeneration generally through the monolayer culture system of T cells in vitro. However, the classic monolayer culture system could neither reproduce the unique three-dimensional epithelial reticular structure of the thymus, nor provide the cytokines and growth factors required for the directed differentiation of hematopoietic stem cells into T cells. Thymic organoid technology utilizes cells with stem cell potential to simulate the anatomical structure of the thymus and the signaling pathway mediated by thymic epithelial cells in vitro through three-dimensional culture, which is particularly close to the microenvironment of the thymus in vivo. Thymic organoids show great potential in the study of T cell differentiation and development, thymus-related diseases, reconstruction of immune function, and cell therapy. This paper summarizes the methods for culturing thymic organoids, followed by comparing the advantages and disadvantages of the scaffolds used for culturing. The applications of thymic organoids in the disease model, tumor-targeting therapy, regenerative medicine, and organ transplantation were also discussed, with possible future research directions prospected.


Subject(s)
Humans , Cell Differentiation , Epithelial Cells , Hematopoietic Stem Cells , Organoids , Regenerative Medicine , Thymus Gland
SELECTION OF CITATIONS
SEARCH DETAIL