Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 21(2): 131-155, mar. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1393364

ABSTRACT

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieri in the central nervous system. It reviewed articles on B. monnieri using Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieri improves learning and memory and presents biological effects against Alzheimer's disease, Parkinson's disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnieri have been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.


Bacopa monnieri (L.) Wettst. (Plantaginaceae), también conocida como Brahmi, se ha utilizado para mejorar los procesos cognitivos y las funciones intelectuales que están relacionadas con la preservación de la memoria. El objetivo de esta investigación es revisar las aplicaciones etnobotánicas, composición fitoquímica, toxicidad y actividad de B. monnieri en el sistema nervioso central. Se revisaron artículos sobre B. monnieri utilizando Google Scholar, SciELO, Science Direct, Lilacs, Medline y PubMed. Las saponinas son los principales compuestos de los extractos de B. monnieri. Los estudios farmacológicos mostraron que B. monnieri mejora el aprendizaje y la memoria y presenta efectos biológicos contra la enfermedad de Alzheimer, la enfermedad de Parkinson, la epilepsia y la esquizofrenia. No se informó toxicidad aguda preclínica. Sin embargo, se informaron efectos secundarios gastrointestinales en algunos ancianos sanos. La mayoría de los estudios con B. monnieri han sido evaluaciones preclínicas de los mecanismos celulares en el sistema nervioso central y es necesario realizar más investigaciones clínicas traslacionales para evaluar la seguridad y eficacia de la planta.


Subject(s)
Humans , Plant Extracts/administration & dosage , Central Nervous System Diseases/drug therapy , Bacopa/chemistry , Parkinson Disease/drug therapy , Saponins/analysis , Schizophrenia/drug therapy , Triterpenes/analysis , Plant Extracts/chemistry , Central Nervous System/drug effects , Cognition/drug effects , Epilepsy/drug therapy , Alzheimer Disease/drug therapy , Phytochemicals
2.
Article in English | WPRIM | ID: wpr-929246

ABSTRACT

Three new ursane-type triterpenoids, 3-oxours-12-en-20, 28-olide (1), 3β-hydroxyurs-12-en-20, 28-olide (2) and 3β-hydroxyurs-11, 13(18)-dien-20, 28-olide (3), were isolated from a potent anti-inflammatory and antibacterial fraction of the ethanolic extract of Rosmarinus officinalis. Their structures were elucidated by a combination of extensive 1D- and 2D-NMR experiments, MS data and comparisons with literature reports. Compounds 1-3 exhibited significantly inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages, but no antibacterial activity was found at a concentration of 128 μg·mL-1.


Subject(s)
Animals , Drugs, Chinese Herbal/chemistry , Mice , Molecular Structure , Rosmarinus , Triterpenes/chemistry
3.
Article in Chinese | WPRIM | ID: wpr-927994

ABSTRACT

This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.


Subject(s)
Animals , Atherosclerosis/genetics , Lipoproteins, LDL/metabolism , Mice , MicroRNAs/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Saponins , Signal Transduction , Triterpenes
4.
Article in Chinese | WPRIM | ID: wpr-927991

ABSTRACT

This study aimed to investigate the anti-inflammatory effect of astragaloside Ⅳ in mice with ulcerative colitis(UC) and its effect on the percentage of peripheral blood T helper(Th17) cells. Following the establishment of UC mouse model with 2% sodium dextran sulfate(DSS), mice in the positive control group and low-and high-dose astragaloside Ⅳ groups were treated with corresponding drugs by gavage. Disease activity index(DAI) was calculated, and serum interleukin-17(IL-17), tumor necrosis factor-α(TNF-α), and transforming growth factor-β(TGF-β) levels were assayed by ELISA. The pathological changes in colon tissue were observed by HE staining, and Th17/regulatory T cells(Treg) ratio in the peripheral blood was determined by flow cytometry. Western blot was conducted for detecting the relative protein expression levels of forkhead box protein P3(Foxp3) and retinoic acid-related orphan nuclear receptor γT(ROR-γt). The findings demonstrated that in normal mice, the colonic structure was intact. The goblet cells were not reduced and the glands were neatly arranged, with no mucosal erosion, bleeding, or positive cell infiltration. In the model group, the colonic mucosal structure was seriously damaged, manifested as disordered arrangement or missing of glands, vascular dilatation, congestion, and massive inflammatory cell infiltration. The pathological injury of colon tissue was alleviated to varying degrees in drug treatment groups. Compared with the normal group, the model group exhibited elevated percentage of Th17 cells, increased IL-17 and TNF-α content, up-regulated relative ROR-γt protein expression, lowered TGF-β, reduced percentage of Treg cells, and down-regulated relative Foxp3 protein expression. The comparison with the model group showed that DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the positive control group, low-dose astragaloside Ⅳ group, and high-dose astragaloside Ⅳ group were decreased, while TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression were increased. The DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the low-dose astragaloside Ⅳ group were higher than those in the positive control group, whereas the content of TGF-β, percentage of Treg cells, and relative Foxp3 protein expression were lower. DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, relative ROR-γt protein expression in the high-dose astragaloside Ⅳ group declined in contrast to those in the low-dose astragaloside Ⅳ group, while the TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression rose. There was no significant difference between the positive control group and the high-dose astragaloside Ⅳ group. Astragaloside Ⅳ is able to inhibit inflammatory response and diminish the percentage of Th17 cells in mice with UC.


Subject(s)
Animals , Colitis, Ulcerative/metabolism , Mice , Saponins/pharmacology , T-Lymphocytes, Regulatory , Th17 Cells , Triterpenes/pharmacology
5.
Chinese Journal of Biotechnology ; (12): 1004-1024, 2022.
Article in Chinese | WPRIM | ID: wpr-927759

ABSTRACT

Triterpenoid saponins are widely used in medicine, health cares, cosmetics, food additives and agriculture because of their unique chemical properties and rich pharmacological activities. UDP-dependent glycosyltransferases (UGTs) are the key enzymes involved in triterpenoid saponin biosynthesis, and play important roles in the diversity of triterpenoid saponin structures and pharmacological activities. This review summarized the UGTs involved in plant triterpenoid saponin biosynthesis based on the sources of UGTs and the types of receptors. Moreover, the application of UGTs in heterologous biosynthesis of triterpenoid saponins based on synthetic biology was also discussed.


Subject(s)
Glycosyltransferases/genetics , Plants , Saponins/chemistry , Triterpenes
6.
Chinese Journal of Biotechnology ; (12): 443-459, 2022.
Article in Chinese | WPRIM | ID: wpr-927721

ABSTRACT

Triterpenoids are one of the most diverse compounds in plant metabolites, and they have a wide variety of physiological activities and are of important economic value. Oxidosqualene cyclases catalyze the cyclization of 2, 3-oxidosqualene to generate different types of sterols and plant triterpenoids, which is of great significance to the structural diversity of natural products. However, the mechanism of the diversified cyclization of 2, 3-oxidosqualene catalyzed by oxidosqualene cyclases remains unclear. This review summarized the research progress of oxidosqualene cyclases from the aspects of catalytic function, molecular evolutionary relationship between genes and proteins, protein structure, molecular simulation and molecular calculations, which may provide a reference for protein engineering and metabolic engineering of triterpene cyclase.


Subject(s)
Intramolecular Transferases/metabolism , Metabolic Engineering , Plants/genetics , Squalene/chemistry , Triterpenes
7.
Article in English | WPRIM | ID: wpr-881073

ABSTRACT

Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.


Subject(s)
Administration, Oral , Alkaloids/analysis , Animals , COVID-19 , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacokinetics , Flavonoids/analysis , Mice , SARS-CoV-2 , Saponins/analysis , Triterpenes/analysis
8.
Frontiers of Medicine ; (4): 79-90, 2021.
Article in English | WPRIM | ID: wpr-880969

ABSTRACT

Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2


Subject(s)
Animals , Brain , Histone Deacetylases , Killer Cells, Natural , Rats , Saponins/pharmacology , Triterpenes/pharmacology
9.
Article in English | WPRIM | ID: wpr-922120

ABSTRACT

OBJECTIVE@#To evaluate the protective effects of Astragaloside IV (AST) in a rat model of myocardial injury induced by cecal ligation and puncture (CLP).@*METHODS@#The model of sepsis-induced cardiac dysfunction was induced by CLP. Using a random number table, 50 specific pathogen free grade of Sprague Dawley rats were randomized into 5 groups: the sham group (sham), the model group (CLP, 18 h/72 h) and AST group (18 h/72 h). Except the sham group, the rats in other groups received CLP surgery to induce sepsis. CLP groups received intragastric administration with normal saline after CLP. AST groups received intragastric administration with AST solution (40 mg/kg) once a day. The levels of inflammatory mediators and oxidative stress markers in the serum of the septic rats were determined via enzyme-linked immunosorbent assay (ELISA) at different time point, such as interleukin 6 (IL-6), IL-10, high mobility group box-1 protein B1 (HMGB-1), superoxide dismutase (SOD), and malondialdehyde (MDA). Cardiac function was determined by echocardiography. Moreover, changes in myocardial pathology were evaluated using hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) were analysed to determine the status of CLP-induced myocardium. In addition, the apotosis of myocardial cells was analysed by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL). The protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), IκB kinase α (IKKα), nuclear factor kappa B p65 (NF-κB p65) were detected by Western blot analysis. Moreover, survival rate was investigated.@*RESULTS@#AST improved the survival rate of CLP-induced rats by up to 33.3% (P<0.05). The cardioprotective effect of AST was observed by increased ejection fraction, fractional shortening and left ventricular internal diameter in diastole respectively (P<0.01 or P<0.05). Subsequently, AST attenuated CLP-induced myocardial apoptosis and the ratio of Bcl-2/Bax in the myocardium, as well as the histological alterations of myocardium (P<0.01 or P<0.05); the generation of inflammatory cytokines (IL-6, IL-10, HMGB-1) and oxidative stress markers (SOD, MDA) in the serum was significantly alleviated (P<0.01 or P<0.05). On the other hand, AST markedly suppressed CLP-induced accumulation of IKK-α and NF-κB p65 subunit phosphorylation (P<0.01 or P<0.05).@*CONCLUSIONS@#AST plays a significant protective role in sepsis-induced cardiac dysfunction and survival outcome. The possible mechanism of cardioprotection is dependent on the activation of the IKK/NF-κB pathway in cardiomyocytes.


Subject(s)
Animals , Disease Models, Animal , Heart Diseases , NF-kappa B , Rats , Rats, Sprague-Dawley , Saponins , Sepsis/drug therapy , Triterpenes , Tumor Necrosis Factor-alpha
10.
Article in Chinese | WPRIM | ID: wpr-921806

ABSTRACT

In this study, the molecular mechanism of astragaloside Ⅳ(AS-Ⅳ) in the treatment of Parkinson's disease(PD) was explored based on network pharmacology, and the potential value of AS-Ⅳ in alleviating neuronal injury in PD by activating the PI3 K/AKT signaling pathway was verified through molecular docking and in vitro experiments. Such databases as SwissTargetPrediction, BTMAN-TAM, and GeneCards were used to predict the targets of AS-Ⅳ for the treatment of PD. The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING) was employed to analyze protein-protein interaction(PPI) and construct a PPI network, and the Database for Annotation, Visualization and Integrated Discovery(DAVID) was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. Based on the results of GO enrichment analysis and KEGG pathway analysis, the PI3 K/AKT signaling pathway was selected for further molecular docking and in vitro experiments in this study. The in vitro cell model of PD was established by MPP~+. The cell viability was measured by MTT assay and effect of AS-Ⅳ on the expression of the PI3 K/AKT signaling pathway-related genes and proteins by real-time polymerase chain reaction(RT-PCR) and Western blot. Network pharmacology revealed totally 122 targets of AS-Ⅳ for the treatment of PD, and GO enrichment analysis yielded 504 GO terms, most of which were biological processes and molecular functions. Totally 20 related signaling pathways were screened out by KEGG pathway analysis, including neuroactive ligand-receptor interaction, PI3 K/AKT signaling pathway, GABAergic synapse, and calcium signaling pathway. Molecular docking demonstrated high affinity of AS-Ⅳ to serine/threonine-protein kinases(AKT1, AKT2), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma(PIK3 CG), and phosphoinositide-3-kinase, catalytic, alpha polypeptide(PIK3 CA) on the PI3 K/AKT signaling pathway. In vitro experiments showed that AS-Ⅳ could effectively inhibit the decrease of the viability of PC12 induced by MPP~+ and up-regulate the mRNA expression levels of AKT1 and PI3 K as well as the phosphorylation levels of AKT and PI3 K. As an active component of Astragali Radix, AS-Ⅳ acts on PD through multiple targets and pathways. Furthermore, it inhibits neuronal apoptosis and protects neurons by activating the PI3 K/AKT signaling pathway, thereby providing reliable theoretical and experimental supports for the treatment of PD with AS-Ⅳ.


Subject(s)
Animals , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Network Pharmacology , PC12 Cells , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Saponins , Signal Transduction , Triterpenes
11.
Article in Chinese | WPRIM | ID: wpr-921770

ABSTRACT

At present, 141 compounds have been isolated from Picrorhiza scrophulariiflora and P. kurroa of the Scrophulariaceae plants, including 46 iridoid glycosides, 29 tetracyclic triterpenoids, 25 phenylpropanoids, and 11 phenylethanoid glycosides. Pharmacological studies have demonstrated that they have liver-, heart-, brain-, kidney-, and nerve cells-protecting effects as well as anti-tumor, anti-inflammatory, anti-bacterial, anti-asthma, anti-diabetic, immunomodulatory, and blood lipid-lowering activities. This article reviews the chemical components and pharmacological activities of P. scrophulariiflora and P. kurroa, aiming to provide a basis for the in-depth research, development, and utilization of the two plants.


Subject(s)
Iridoid Glycosides , Picrorhiza , Triterpenes/pharmacology
12.
Article in Chinese | WPRIM | ID: wpr-921633

ABSTRACT

Azadirachtin, as a botanical insecticide, is a highly oxidized limonoid triterpenoid existing in the seeds of Azadirachta indica. However, due to the low content in the seeds, the production of azadirachtin by seed extraction has low yield. Chemical synthesis of azadirachtin is characterized by complex process and low yield. Synthetic biology provides an alternative for the supply of azadirach-tin. In this study, two oxidosqualene cyclases AiOSC1 and MaOSC1 respectively derived from A. indica and Melia azedarach were identified in yeast. A yeast strain producing tirucalla-7,24-dien-3β-ol was constructed by integration of AiOSC1, Arabidopsis thaliana-derived squalene synthase gene(AtAQS2), and Saccharomyces cerevisiae-derived truncated 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene(PgtHMGR) into the delta site of yeast. Then, the function of MaCYP71BQ5 was successfully verified in yeast after this gene was introduced into the constructed yeast strain. This study not only laid a foundation for the biosynthesis of tirucalla-7,24-dien-3β-ol, but also provided a chassis cell for the functional identification of cytochrome oxidases(CYP450 s) in azadirachtin biosynthesis pathway.


Subject(s)
Azadirachta , Limonins , Saccharomyces cerevisiae/genetics , Triterpenes
13.
Article in Chinese | WPRIM | ID: wpr-888185

ABSTRACT

This study investigated the protective effect of total triterpenoids from Chaenomeles speciosa against Helicobacter pylori(Hp)-induced gastritis in mice and explored its possible mechanism. The chronic atrophic gastritis(CAG) model mice were randomly divided into four groups of model, total triterpenoids from C. speciosa(50 and 100 mg·kg~(-1)) and triple therapy, with C57 BL/6 J mice without Hp infection taken as the normal group. Mice in the treatment groups were given corresponding drugs once a day for 4 weeks. Then the following indexes were detected: the contents of reactive oxygen species(ROS), monocyte chemotactic protein 1(MCP-1), keratinocyte chemokines(KC), TNF-α, IL-1β, IL-6, IL-18, IL-4 and IL-10 in blood and gastric tissue, the activities and contents of LDH, MPO, SOD, GSH-Px, CAT and MDA in gastric tissue and the activities of β-glucuronidase, β-galactosidase, cathepsins B and D in blood, gastric tissue and lysosome. Besides, the mRNA expression levels of Toll-like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), Bcl-2, Bcl-xl, Bax and Bad in gastric tissue were determined by quantitative real-time PCR. Western blot was employed to detect the protein expression levels of TLR4, MyD88, p-IKKβ, p-IκBα, NOD-like receptor 3(NLRP3), apoptosis-associated speck-like protein(ASC), pro-caspase-1, caspase-1, thioredoxin-interacting protein(TXNIP), pro-IL-1β, pro-IL-18, Bcl-2, Bcl-xl, Bax, Bad, cytochrome C, apoptotic protease-activating factor-1(Apaf-1), pro-caspase-9, pro-caspase-3, cleaved-caspase-9, cleaved-caspase-3, poly(ADP-ribose) polymerase 1(PARP-1), cleaved-PARP-1 and cytosol and nucleus NF-κB p65 in gastric tissue. The results indicated that the total triterpenoids from C. speciosa significantly suppressed Hp proliferation, alleviated the damage to gastric mucosa and improved lymphocyte infiltration and gland atrophy. They were also effective in reducing the activities of β-glucuronidase, β-galactosidase, cathepsins B and D in blood and gastric tissue, elevating the activities of β-glucuronidase and cathepsin D in lysosomal organelles, decreasing the contents of ROS, MCP-1, KC, TNF-α, IL-1β, IL-6, IL-18 in blood, MDA content and MPO and LDH activities in gastric tissue and increasing the contents of IL-4 and IL-10 in blood and activities of SOD, CAT and GSH-Px in gastric tissue. Other phenomena were also observed after the treatment with total triterpenoids from C. speciosa, including the down-regulation of the mRNA and protein expression levels of TLR4, MyD88, Bax and Bad, the protein expression levels of p-IKKβ, p-IκBα, NLRP3, ASC, pro-caspase-1, caspase-1, TXNIP, pro-IL-1β, pro-IL-18, cytochrome C, Apaf-1, cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 and nuclear NF-κB p65, reduction of p-IKKβ/IKKβ and p-IκBα/IκBα ratios and up-regulation of the mRNA and protein expression levels of Bcl-2 and Bcl-xl, up-regulation of pro-caspase-9, pro-caspace-3, cytosol NF-κB p65 protein expression levels and Bcl-2/Bax and Bcl-xl/Bad ratios in gastric tissue. These aforementioned results suggest that the total triterpenoids from C. speciosa have significant protective effects against CAG induced by Hp, and its mechanism may be related to enhancing the function of endogenous antioxidant system, suppressing the oxidative stress and inflammatory reaction induced by Hp, correcting lysosomal dysfunction and inflammatory activation of TLR4/NF-κB/NLRP3 inflammasome signaling pathway and thus inhibiting mitochondria-mediated apoptosis.


Subject(s)
Animals , Gastritis/drug therapy , Helicobacter pylori , Mice , NF-kappa B/genetics , Rosaceae , Triterpenes
14.
Article in Chinese | WPRIM | ID: wpr-888180

ABSTRACT

Four new lanostane triterpenoids, 3β-hydroxy-12α-methoxylanosta-7,9(11),24-triene(1), 3β-hydroxy-12α-methoxy-24-methylene-lanost-7,9(11)-dien(2), 3,7-dioxo-lanosta-8,24-diene(3), and 3,7-dioxo-24-methylene-lanost-8-en(4), were isolated from the latex of Euphorbia resinifera with a variety of chromatography methods. Their structures were elucidated based on spectroscopic data and/or comparison with the data reported in previous research. Compounds 1, 2, and 4 showed moderate inhibition of LPS-induced NO production by RAW264.7, with IC_(50) of 30.4, 37.5, and 28.3 μmol·L~(-1), respectively.


Subject(s)
Euphorbia , Latex , Molecular Structure , Steroids , Triterpenes
15.
Article in Chinese | WPRIM | ID: wpr-888178

ABSTRACT

The present study aimed to explore the mechanism of the sweating of Dipsacus asper on content changes of triterpene sa-ponins by detecting the total triterpene saponins and the index component asperosaponin Ⅵ in the crude and sweated D. asper, and analyzing the differentially expressed proteins by isobaric tags for relative and absolute quantification(iTRAQ) combined with LC-MS/MS. After sweating, the content of total triterpene saponins decreased manifestly, while that of asperosaponin Ⅵ increased significantly. As revealed by the iTRAQ-LC-MS/MS analysis, 140 proteins with significant differential expression were figured out, with 50 up-regulated and 90 down-regulated. GO analysis indicated a variety of hydrolases, oxido-reductases, and transferases in the differential proteins. The results of activity test on two differentially expressed oxido-reductases were consistent with those of the iTRAQ-LC-MS/MS analysis. As demonstrated by the analysis of enzymes related to the triterpene saponin biosynthesis pathway, two enzymes(from CYP450 and UGT families, respectively, which are involved in the structural modification of triterpene saponins) were significantly down-regulated after sweating. The findings suggested that sweating of D. asper presumedly regulated triterpene saponins by affecting the expression of downstream CYP450 s and UGTs in the biosynthesis pathway of triterpene saponins of D. asper.


Subject(s)
Chromatography, Liquid , Dipsacaceae , Humans , Saponins , Sweating , Tandem Mass Spectrometry , Triterpenes
16.
Article in Chinese | WPRIM | ID: wpr-888143

ABSTRACT

The combination of normal-phase silica gel column chromatography, octadecyl silica(ODS) column chromatography, semi-preparative high performance liquid chromatography(HPLC), etc. was employed to isolate and purify the chemical components from Euphorbia resinifera, and 7 triterpenoids were separated from the ethanol extract of the medicinal materials. Their structures were identified by various spectroscopy methods as cycloartan-1,24-diene-3-one(1), cycloartan-1,24-diene-3-ol(2), 3β-hydroxy-lanosta-8,24-diene-11-one(3), lnonotusane C(4), eupha-8,24-diene-3β-ol-7,11-dione(5), eupha-24-methylene-8-ene-3β-ol-7,11-dione(6), and eupha-8,24-diene-3β,11β-diol-7-one(7). Compounds 1 and 2 are new compounds, and compound 3 is obtained from nature for the first time.


Subject(s)
Drugs, Chinese Herbal , Euphorbia , Molecular Structure , Triterpenes
17.
Article in Chinese | WPRIM | ID: wpr-888132

ABSTRACT

Xanthoceras sorbifolia, an excellent oil-rich woody species, has high comprehensive economic value in edible, medicinal, and ornamental fields. The chemical composition, pharmacological effect, and quality control of X. sorbifolia were introduced, and its development and application were reviewed in this study. As revealed by the previous research, the main chemical constituents of X. sorbifolia were triterpenoids, flavonoids, fatty acids, phenylpropanoids, steroids, phenolic acids, organic acids, etc. It possesses pharmacological effects, such as neuroprotection, bacteriostasis, anti-oxidation, anti-tumor, anti-inflammation, analgesia, anti-HIV, and anti-coagulation. X. sorbifolia is widely applied in medical, food, chemical industry, and other fields, and deserves in-depth research and development.


Subject(s)
Anti-Inflammatory Agents , Flavonoids , Research , Sapindaceae , Triterpenes
18.
Article in Chinese | WPRIM | ID: wpr-888130

ABSTRACT

Bolbostemma paniculatum is a commonly used Chinese medicinal material effective in clearing heat, removing toxin, eliminating phlegm, and alleviating swelling. The anti-tumor activity it possesses makes it a research hotspot. At present, 76 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids, anthraquinones, organic acids, etc., with anti-tumor, antiviral, and immunosuppressive pharmacological activities. This study reviewed the research on the chemical constituents and pharmacological effects of B. paniculatum over the past 20 years, aiming to provide a scientific basis for the research on the pharmacodynamic material basis and promote the development and utilization of B. paniculatum.


Subject(s)
Cucurbitaceae , Drugs, Chinese Herbal/pharmacology , Edema , Triterpenes
19.
Article in Chinese | WPRIM | ID: wpr-888054

ABSTRACT

The effect of intestinal flora changes on the pharmacokinetics of astragaloside Ⅳ in rats with type 2 diabetes mellitus was explored in this study. The rat model in preliminary experiment was established by high-sugar and high-fat diet combined with the intraperitoneal injection of low-dose streptozotocin(STZ). Rats were divided into model group, astragaloside Ⅳ group, berberine group and combination group(five rats in each group). After two weeks of gavage, the rats' feces was taken for 16 S rRNA sequencing of intestinal flora. Pharmacokinetic experiments were performed on astragaloside Ⅳ in the four groups one day after the preliminary experiment. Plasma samples were precipitated in methanol with ginsenoside Rb_1 as an internal standard, and the plasma concentrations of astragaloside Ⅳ at different time points were determined by UPLC-MS/MS. The chromatographic separation was performed on a Waters Acquity UPLC BEH-C_(18) column(2.1 mm×100 mm, 1.7 μm) via gradient elution. The mobile phase was acetonitrile(A) and 5 mmol·L~(-1) ammonium formate solution with 0.2% formic acid(B). The flow rate was 0.4 mL·min~(-1), the injection volume 5 μL and the column temperature 40 ℃. The mass spectrometry was carried out with electrospray ionization source(ESI) in multiple reaction monitoring and positive ion modes. The specificity, linearity range, accuracy, precision, stability and dilution effect of the method all met the requirements for the determination of astragaloside Ⅳ in plasma. Plasma concentration-time curves were plotted and relevant pharmacokinetic parameters were calculated by DAS 3.2.8. The results showed that the concentration of absorbed astragaloside Ⅳ increased within 0-3.95 h and began to decline since 3.95 h. After 36 h, the metabolism was complete. The area under the plasma concentration-time curve(AUC_(0-t)) and the peak concentration(C_(max)) of astragaloside Ⅳ were increased in the three administration groups compared with the model group, but without significant difference, which suggested that the pharmacokinetic characteristics of saponin components would not necessarily change after the drug-induced alteration of intestinal flora.


Subject(s)
Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Saponins , Tandem Mass Spectrometry , Triterpenes
20.
Article in Chinese | WPRIM | ID: wpr-888052

ABSTRACT

The chemical constituents from the leaves of Ilex guayusa were investigated. Sixteen triterpenoids were isolated from the 95% ethanol extract of dried leaves of I. guayusa by silica gel, Sephadex LH-20, and ODS column chromatographies and semi-prepa-rative HPLC. Those triterpenoids were identified by NMR, HR-MS, and literature analysis: 3β-hydroxy-11α,12α-epoxy-24-nor-urs-4(23)-ene-28,13β-olide(1), 3β-hydroxy-24-nor-4(23),12-oleanadien-28-methyl ester(2), oleanolic acid(3), 3β,28-dihydroxy-12-oleanene(4), 2α,3β-dihydroxy-11α,12α-epoxy-24-'nor-olean-4(23)-ene-28,13β-olide(5), ursolic acid(6), 3β,23-dihydroxy ursolic acid(7), 3β,28-dihydroxy-12-ursene(8), 3β-28-nor-urs-12-ene-3,17-diol(9), 3β-hydroxyurs-11-ene-28,13β-olide(10), 13β,28-epoxy-3β-hydroxy-11-ursene(11), 3β-hydroxy-28,28-dimethoxy-12-ursene(12), 3β-hydroxy-24-nor-urs-4(23),12-dien-28-oic acid(13), 3β-hydroxy-24-nor-urs-4(23),12-dien-28-methyl ester(14), 2α,3β-dihydroxy-11α,12α-epoxy-24-nor-urs-4(23)-ene-28,13β-olide(15) and 2α,3β-dihydroxy-11α,12α-epoxy-24-nor-urs-4(23),20(30)-dien-28,13β-olide(16). Compounds 1-2 were new compounds, and compounds 4-5, 7 and 9-16 were isolated from I. guayusa for the first time.


Subject(s)
Drugs, Chinese Herbal , Ilex guayusa , Molecular Structure , Oleanolic Acid , Plant Leaves , Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL