Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10853, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740973

RESUMO

The traditional decomposed ensemble prediction model decomposes the entire rainfall sequence into several sub-sequences, dividing them into training and testing periods for modeling. During sample construction, future information is erroneously mixed into the training data, making it challenging to apply in practical rainfall forecasting. This paper proposes a novel stepwise decomposed ensemble coupling model, realized through variational mode decomposition (VMD) and bidirectional long short-term memory neural network (BiLSTM) models. Model parameters are optimized using an improved particle swarm optimization (IPSO). The performance of the model was evaluated using rainfall data from the Southern Four Lakes basin. The results indicate that: (1) Compared to the PSO algorithm, the IPSO algorithm-coupled model shows a minimum decrease of 2.70% in MAE and at least 2.62% in RMSE across the four cities in the Southern Four Lakes basin; the IPSO algorithm results in a minimum decrease of 25.58% in MAE and at least 28.19% in RMSE for the VMD-BiLSTM model. (2) When compared to IPSO-BiLSTM, the VMD-IPSO-BiLSTM based on the stepwise decomposition technique exhibits a minimum decrease of 26.54% in MAE and at least 34.16% in RMSE. (3) The NSE for the testing period of the VMD-IPSO-BiLSTM model in each city surpasses 0.88, indicating higher prediction accuracy and providing new insights for optimizing rainfall forecasting.

2.
PeerJ Comput Sci ; 10: e1819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435608

RESUMO

Stock price prediction is crucial in stock market research, yet existing models often overlook interdependencies among stocks in the same industry, treating them as independent entities. Recognizing and accounting for these interdependencies is essential for precise predictions. Propensity score matching (PSM), a statistical method for balancing individuals between groups and improving causal inferences, has not been extensively applied in stock interdependence investigations. Our study addresses this gap by introducing PSM to examine interdependence among pharmaceutical industry stocks for stock price prediction. Additionally, our research integrates Improved particle swarm optimization (IPSO) with long short-term memory (LSTM) networks to enhance parameter selection, improving overall predictive accuracy. The dataset includes price data for all pharmaceutical industry stocks in 2022, categorized into chemical pharmaceuticals, biopharmaceuticals, and traditional Chinese medicine. Using Stata, we identify significantly correlated stocks within each sub-industry through average treatment effect on the treated (ATT) values. Incorporating PSM, we match five target stocks per sub-industry with all stocks in their respective categories, merging target stock data with weighted data from non-target stocks for validation in the IPSO-LSTM model. Our findings demonstrate that including non-target stock data from the same sub-industry through PSM significantly improves predictive accuracy, highlighting its positive impact on stock price prediction. This study pioneers PSM's use in studying stock interdependence, conducts an in-depth exploration of effects within the pharmaceutical industry, and applies the IPSO optimization algorithm to enhance LSTM network performance, providing a fresh perspective on stock price prediction research.

3.
Environ Sci Pollut Res Int ; 31(9): 14270-14283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277103

RESUMO

Cropland is the foundation of food security. Coal is the guarantee of energy security. As China's demand for coal and grain continues to increase, so does the overlap area of their production bases. Unrestrained underground mining can cause serious damage to cropland, leading to increasing conflicts between coal mining and food production. Thus, this paper used a partial backfilling mining technology to control surface subsidence and thus protect cropland. The key to successfully implementing the technology is how to design the panel size. However, the design efficiency of the conventional enumeration method is low. Therefore, this paper proposed a design approach based on improved particle swarm optimization. The results indicated that the approach could quickly find the optimal size of the panel compared with the enumeration method and particle swarm optimization. Moreover, if the longwall panel is mined according to the size designed by the approach, the cropland will be protected, and the cost will be reduced. This study can provide technical support for the cooperative development of cropland protection and coal mining in a coal-cropland overlapping area.


Assuntos
Minas de Carvão , Minas de Carvão/métodos , Carvão Mineral , Produtos Agrícolas , China
4.
Environ Res ; 247: 118199, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246303

RESUMO

Accurate detection of pollutant levels in water bodies using fusion algorithms combined with spectral data has become a critical issue for water conservation. However, the number of samples is too small and the model is unstable, which often leads to poor prediction and fails to achieve the measurement goal well. To address these challenges, this paper proposes a practical and effective method to precisely predict the concentrations of nitrite pollution in aquatic environments. The proposed method consists of three steps. Firstly, the dimension of the spectral data is reduced using Kernel Principal Component Analysis (KPCA), followed by sample augmentation using Generative Adversarial Network (GAN) to reduce calculation cost and increase the diversity and scale of the data. Secondly, several improvement strategies, including multi-cluster competitive and adaptive parameter updating, are introduced to enhance the capability of the Particle Swarm Optimization (PSO) algorithm. The improved PSO algorithm is then applied to optimize the initialization weights and biases of the Back Propagation neural network, thereby improving the model fitting and training performance. Finally, the developed prediction model is employed to predict the test set samples. The result suggests that the R2, RMSE, and MAE values are 0.976290, 0.008626, and 0.006617, which outperform the state-of-the-art and provided a promising model for the prediction of nitrite concentration in water.


Assuntos
Nitritos , Água , Redes Neurais de Computação , Algoritmos , Análise de Componente Principal
5.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005639

RESUMO

Most coastal trash comes from land. To prevent and control ocean pollution, it should be handled using sources that can maintain a clean ocean and improve the marine ecological environment. The proposed system can be used to inspect riverbanks and identify garbage on riverbanks. This waste can then be cleaned up before flowing into the sea. In this study, we utilized an unmanned aerial vehicle (UAV) to inspect riverbanks and applied path planning and obstacle avoidance to enhance the efficiency of UAV performance and ensure good adaptability in a complicated environment. Since most rivers in the middle and upper sections of the study area are rough and meandering, path planning was first addressed so that the drone could use the shortest path and less energy to perform the inspection task. Branches frequently protrude from the riverbank on both sides. Therefore, an instant obstacle avoidance algorithm was added to avoid various obstacles. Path planning was based on an Improved Particle Swarm Optimization (IPSO). A fuzzy system was added to the IPSO to adjust the parameters that could shorten the planned path. The Artificial Potential Field (APF) was applied for real-time dynamic obstacle avoidance. The proposed UAV system could be used to perform riverbank inspection successfully.

6.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960395

RESUMO

In this paper we outline newly-developed control algorithms, designed to achieve high-precision feedback for a motor control system using a magnetic encoder. The magnetic encoder, combing single-pole and multi-pole magnetic steels, was adopted to extend the resolution of the magnetic encoder. First, with a view to settling the issue of the jump points of the multi-pole angle value at the convergence of two adjacent magnetic poles, the angle segmentation method, which uses the window filter discrimination method, is employed to determine the actual angle value. The appropriate filter window width is selected via the improved particle swarm optimization (IPSO) algorithm, and an expanded resolution is achieved. Second, a compensation table is completed via a linear compensation algorithm based on virtual cutting to enhance the accuracy of the combined magnetic encoder. On this basis, a linear difference algorithm is used to achieve deviation correction of the angle. Finally, the jump points can be restrained effectively via the angle segmentation method. The resolution reaches 0.05°, and the accuracy is 0.045°.

7.
Bioengineering (Basel) ; 10(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760181

RESUMO

Quadrupole mass spectrometers (QMS) are widely used for clinical diagnosis and chemical analysis. To obtain the best experimental results, mass spectrometers must be calibrated to an ideal setting before use. However, tuning the current QMS is challenging. Traditional tuning techniques possess low automation levels and rely primarily on skilled engineers. Therefore, in this study, we propose an innovative auto-tuning algorithm for QMS based on the improved particle swarm optimization (PSO) algorithm to automatically find the optimal solution of QMS parameters and make the QMS reach the optimal state. The improved PSO algorithm is combined with simulated annealing, multiple inertia weights, dynamic boundaries, and other methods to prevent the traditional PSO algorithm from the issue of a local optimal solution and premature convergence. According to the characteristics of the mass spectrum peaks, a termination function is proposed to simplify the termination conditions of the PSO algorithm and further improve the automation level of the mass spectrometer. The results of auto-calibration testing of resolution and mass axis show that both resolution and mass axis calibration could effectively meet the requirements of mass spectrometry experiments. By the experiment of auto-optimization testing of lens and ion source parameters, these parameters were all in the vicinity of the optimal solution, which achieved the expected performance. Through numerous experiments, the reproducibility of the algorithm was established as meeting the auto-tuning function of the QMS. The proposed method can automatically tune the mass spectrometer from its non-optimal condition to the optimal one, which can effectively reduce the tuning difficulty of QMS.

8.
ISA Trans ; 143: 115-130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709562

RESUMO

The absence of real-time airspeed sensors, which was more often ignored in previous studies, and low dynamic characteristics render stratospheric airship control challenging. This study creatively overcomes the aforementioned problems in an integrated path planning and following control scheme using forecasted wind field data. Herein, an efficient and practicable path planning algorithm is designed. Further, a smooth vector field guidance law is proposed for solving the problem of complex path following. Subsequently, an event-triggered neural network-based adaptive tracking controller is designed, considering the wind forecast error influence. Finally, these three parts are organically integrated to achieve autonomous flight. The stability of the closed-loop system and the exclusion of Zeno behavior are rigorously proved. The simulation results reveal that the convergence rate is 63.8% improved, essentially exhibiting better optimization, the tracking errors are eliminated within 80 s, and 99.4% control input updating times are saved.

9.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571619

RESUMO

In recent years, both machine learning and computer vision have seen growth in the use of multi-label categorization. SMOTE is now being utilized in existing research for data balance, and SMOTE does not consider that nearby examples may be from different classes when producing synthetic samples. As a result, there can be more class overlap and more noise. To avoid this problem, this work presented an innovative technique called Adaptive Synthetic Data-Based Multi-label Classification (ASDMLC). Adaptive Synthetic (ADASYN) sampling is a sampling strategy for learning from unbalanced data sets. ADASYN weights minority class instances by learning difficulty. For hard-to-learn minority class cases, synthetic data are created. Their numerical variables are normalized with the help of the Min-Max technique to standardize the magnitude of each variable's impact on the outcomes. The values of the attribute in this work are changed to a new range, from 0 to 1, using the normalization approach. To raise the accuracy of multi-label classification, Velocity-Equalized Particle Swarm Optimization (VPSO) is utilized for feature selection. In the proposed approach, to overcome the premature convergence problem, standard PSO has been improved by equalizing the velocity with each dimension of the problem. To expose the inherent label dependencies, the multi-label classification ensemble of Adaptive Neuro-Fuzzy Inference System (ANFIS), Probabilistic Neural Network (PNN), and Clustering-Based Decision tree methods will be processed based on an averaging method. The following criteria, including precision, recall, accuracy, and error rate, are used to assess performance. The suggested model's multi-label classification accuracy is 90.88%, better than previous techniques, which is PCT, HOMER, and ML-Forest is 65.57%, 70.66%, and 82.29%, respectively.

10.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631666

RESUMO

Unmanned aerial vehicle (UAV) collaboration has become the main means of indoor and outdoor regional search, railway patrol, and other tasks, and navigation planning is one of the key, albeit difficult, technologies. The purpose of UAV navigation planning is to plan reasonable trajectories for UAVs to avoid obstacles and reach the task area. Essentially, it is a complex optimization problem that requires the use of navigation planning algorithms to search for path-point solutions that meet the requirements under the guide of objective functions and constraints. At present, there are autonomous navigation modes of UAVs relying on airborne sensors and navigation control modes of UAVs relying on ground control stations (GCSs). However, due to the limitation of airborne processor computing power, and background command and control communication delay, a navigation planning method that takes into account accuracy and timeliness is needed. First, the navigation planning architecture of UAVs of end-cloud collaboration was designed. Then, the background cloud navigation planning algorithm of UAVs was designed based on the improved particle swarm optimization (PSO). Next, the navigation control algorithm of the UAV terminals was designed based on the multi-objective hybrid swarm intelligent optimization algorithm. Finally, the computer simulation and actual indoor-environment flight test based on small rotor UAVs were designed and conducted. The results showed that the proposed method is correct and feasible, and can improve the effectiveness and efficiency of navigation planning of UAVs.

11.
Sci Prog ; 106(2): 368504231180089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306207

RESUMO

The development of tunneling equipment still lags behind, limiting rapid and accurate tunneling and restricting efficient production in coal mines. Thus, improving the reliability and design of roadheaders becomes essential. As the shovel plate is an essential part of a roadheader, improving its parameters can increase the roadheader performance. The parameter optimization of roadheader shovel plate is multi-objective optimization. Because of conventional multiobjective optimization requires strong prior knowledge, often provides low-quality results, and presents vulnerability to initialization and other shortcomings when used in practice. We propose an improved particle swarm optimization (PSO) algorithm that takes the minimum Euclidean distance from a base value as the evaluation criterion for global and individual extreme values. The improved algorithm enables multiobjective parallel optimization by providing a non-inferior solution set. Then, the optimal solution is searched in this set using grey decision to obtain the optimal solution. To validate the proposed method, the multiobjective optimization problem of the shovel-plate parameters is formulated for its solution. Before optimization shovel-plate most important parameters l is the width of the shovel plate l = 3.2 m, ß is the inclination angle of the shovel plate and ß = ,19°. When doing optimization, set accelerated factor c1=c2=2, population size N = 20, and maximum number of iterations Tmax = 100. In addition, speed V was restricted by V=Vimax-Vimin, and inertia factor W was dynamic and linearly decreasing, w(t)=wmin+wmax-wminN(N-t), with wmax=0.9 and wmin=0.4. In addition, r1 and r2 were set randomly in [0, 1], while optimization degree η was set to 30%. And then we executed the improved PSO, obtaining 2000 non-inferior solutions. Apply grey decision to find the optimal solution. The optimal roadheader shovel-plate parameters are l = 3.144 m and ß = 16.88°. Comparative analysis is made before and after optimization, the optimized parameters were substituted into the model and simulated. Obtained that the optimized parameters of shovel-plate can reduce the mass of the shovel plate decreases by 14.3%, while the propulsive resistance decreases by 6.62%, and the load capacity increases by 3.68%. Thus jointly achieving the optimization goals of reducing the propulsive resistance while increasing the load capacity. The feasibility of the proposed multiobjective optimization method with improved particle swarm optimization and grey decision is verified, and the method can provide convenient multiobjective optimization in engineering practice.

12.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050514

RESUMO

Autonomous driving technology has not yet been widely adopted, in part due to the challenge of achieving high-accuracy trajectory tracking in complex and hazardous driving scenarios. To this end, we proposed an adaptive sliding mode controller optimized by an improved particle swarm optimization (PSO) algorithm. Based on the improved PSO, we also proposed an enhanced grey wolf optimization (GWO) algorithm to optimize the controller. Taking the expected trajectory and vehicle speed as inputs, the proposed control scheme calculates the tracking error based on an expanded vector field guidance law and obtains the control values, including the vehicle's orientation angle and velocity on the basis of sliding mode control (SMC). To improve PSO, we proposed a three-stage update function for the inertial weight and a dynamic update law for the learning rates to avoid the local optimum dilemma. For the improvement in GWO, we were inspired by PSO and added speed and memory mechanisms to the GWO algorithm. Using the improved optimization algorithm, the control performance was successfully optimized. Moreover, Lyapunov's approach is adopted to prove the stability of the proposed control schemes. Finally, the simulation shows that the proposed control scheme is able to provide more precise response, faster convergence, and better robustness in comparison with the other widely used controllers.

13.
Entropy (Basel) ; 25(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36832646

RESUMO

Trading signal detection is a very popular yet challenging research topic in the financial investment area. This paper develops a novel method integrating piecewise linear representation (PLR), improved particle swarm optimization (IPSO) and a feature-weighted support vector machine (FW-WSVM) to analyze the nonlinear relationships between trading signals and the stock data hidden in historical data. First, PLR is applied to generate numerous trading points (valleys or peaks) based on the historical data. These turning points' prediction is formulated as a three-class classification problem. Then, IPSO is utilized to find the optimal parameters of FW-WSVM. Lastly, we conduct a series of comparative experiments between IPSO-FW-WSVM and PLR-ANN on 25 stocks with 2 different investment strategies. The experiment results show that our proposed method achieves higher prediction accuracy and profitability, which indicates the IPSO-FW-WSVM method is effective in the prediction of trading signals.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36554314

RESUMO

Urban rail transit (URT) is a key mode of public transport, which serves for greatest user demand. Short-term passenger flow prediction aims to improve management validity and avoid extravagance of public transport resources. In order to anticipate passenger flow for URT, managing nonlinearity, correlation, and periodicity of data series in a single model is difficult. This paper offers a short-term passenger flow prediction combination model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and long-short term memory neural network (LSTM) in order to more accurately anticipate the short-period passenger flow of URT. In the meantime, the hyperparameters of LSTM were calculated using the improved particle swarm optimization (IPSO). First, CEEMDAN-IPSO-LSTM model performed the CEEMDAN decomposition of passenger flow data and obtained uncoupled intrinsic mode functions and a residual sequence after removing noisy data. Second, we built a CEEMDAN-IPSO-LSTM passenger flow prediction model for each decomposed component and extracted prediction values. Third, the experimental results showed that compared with the single LSTM model, CEEMDAN-IPSO-LSTM model reduced by 40 persons/35 persons, 44 persons/35 persons, 37 persons/31 persons, and 46.89%/35.1% in SD, RMSE, MAE, and MAPE, and increase by 2.32%/3.63% and 2.19%/1.67% in R and R2, respectively. This model can reduce the risks of public health security due to excessive crowding of passengers (especially in the period of COVID-19), as well as reduce the negative impact on the environment through the optimization of traffic flows, and develop low-carbon transportation.


Assuntos
COVID-19 , Má Oclusão , Humanos , Meios de Transporte/métodos , Redes Neurais de Computação , Saúde Pública
15.
Micromachines (Basel) ; 13(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35630165

RESUMO

The Preisach model is a typical scalar mathematical model used to describe the hysteresis phenomena, and it attracts considerable attention. However, parameter identification for the Preisach model remains a challenging issue. In this paper, an improved particle swarm optimization (IPSO) method is proposed to identify Preisach model parameters. Firstly, the Preisach model is established by introducing a Gaussian-Gaussian distribution function to replace density function. Secondly, the IPSO algorithm is adopted to Fimplement the parameter identification. Finally, the model parameter identification results are compared with the hysteresis loop of the piezoelectric actuator. Compared with the traditional Particle Swarm Optimization (PSO) algorithm, the IPSO algorithm demonstrates faster convergence, less calculation time and higher calculation accuracy. This proposed method provides an efficient approach to model and identify the Preisach hysteresis of piezoelectric actuators.

16.
Environ Sci Pollut Res Int ; 29(46): 69472-69490, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35567684

RESUMO

Accurate estimations of municipal solid waste (MSW) generation are vital to effective MSW management systems. While various single-point estimation approaches have been developed, the non-linearity and multiple site-specific influencing factors associated with MSW management systems make it challenging to forecast MSW generation quantities precisely. To address these concerns, this study developed a two-stage modeling and scenario analysis procedure for MSW generation and taking Shanghai as a test case demonstrated its viability. In the first stage, nine influencing factors were selected, and a hybrid novel forecasting model based on a long short-term memory neural network and an improved particle swarm optimization (IPSO-LSTM) was proposed for the forecasting of the MSW generation quantities, after which actual Shanghai data from 1980 to 2019 were used to test the performance. In the second stage, the future influencing variable values in different scenarios were predicted using an improved grey model, after which the predicted Shanghai MSW generation quantities from 2025 to 2035 were evaluated under various scenarios. It was found that (1) the proposed IPSO-LSTM had higher accuracy than the benchmark models; (2) the MSW generation quantities are expected to respectively increase to 9.971, 9.684, and 9.090 million tons by 2025 and 11.402, 11.285, and 10.240 by 2035 under the low, benchmark, and high scenarios; and (3) the MSW generation differences between the high and medium scenarios were decreasing.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , China , Cidades , Memória de Curto Prazo , Redes Neurais de Computação , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos
17.
Math Biosci Eng ; 19(5): 4547-4567, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35430827

RESUMO

Compared with the land power grid, power capacity of ship power system is small, its power load has randomness. Ship power load forecasting is of great significance for the stability and safety of ship power system. Support vector machine (SVM) load forecasting algorithm is a common method of ship power load forecasting. In this paper, water flow velocity, wind speed and ship speed are used as the features of SVM to train the load forecasting algorithm, which strengthens the correlation between features and predicted values. At the same time, regularization parameter C and standardization parameter σ of SVM has a great influence on the prediction accuracy. Therefore, the improved particle swarm optimization algorithm is used to optimize these two parameters in real time to form a new improved particle swarm optimization support vector machine algorithm (IPSO-SVM), which reduces the load forecasting error, improves the prediction accuracy of ship power load, and improves the performance of ship energy management system.

18.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271105

RESUMO

The biometric identification method is a current research hotspot in the pattern recognition field. Due to the advantages of electrocardiogram (ECG) signals, which are difficult to replicate and easy to obtain, ECG-based identity identification has become a new direction in biometric recognition research. In order to improve the accuracy of ECG signal identification, this paper proposes an ECG identification method based on a multi-scale wavelet transform combined with the unscented Kalman filter (WT-UKF) algorithm and the improved particle swarm optimization-support vector machine (IPSO-SVM). First, the WT-UKF algorithm can effectively eliminate the noise components and preserve the characteristics of ECG signals when denoising the ECG data. Then, the wavelet positioning method is used to detect the feature points of the denoised signals, and the obtained feature points are combined with multiple feature vectors to characterize the ECG signals, thus reducing the data dimension in identity identification. Finally, SVM is used for ECG signal identification, and the improved particle swarm optimization (IPSO) algorithm is used for parameter optimization in SVM. According to the analysis of simulation experiments, compared with the traditional WT denoising, the WT-UKF method proposed in this paper improves the accuracy of feature point detection and increases the final recognition rate by 1.5%. The highest recognition accuracy of a single individual in the entire ECG identification system achieves 100%, and the average recognition accuracy can reach 95.17%.


Assuntos
Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Algoritmos , Eletrocardiografia/métodos , Análise de Ondaletas
19.
Front Neurorobot ; 15: 770361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803648

RESUMO

The traditional particle swarm optimization (PSO) path planning algorithm represents each particle as a path and evolves the particles to find an optimal path. However, there are problems in premature convergence, poor global search ability, and to the ease in which particles fall into the local optimum, which could lead to the failure of fast optimal path obtainment. In order to solve these problems, this paper proposes an improved PSO combined gray wolf optimization (IPSO-GWO) algorithm with chaos and a new adaptive inertial weight. The gray wolf optimizer can sort the particles during evolution to find the particles with optimal fitness value, and lead other particles to search for the position of the particle with the optimal fitness value, which gives the PSO algorithm higher global search capability. The chaos can be used to initialize the speed and position of the particles, which can reduce the prematurity and increase the diversity of the particles. The new adaptive inertial weight is designed to improve the global search capability and convergence speed. In addition, when the algorithm falls into a local optimum, the position of the particle with the historical best fitness can be found through the chaotic sequence, which can randomly replace a particle to make it jump out of the local optimum. The proposed IPSO-GWO algorithm is first tested by function optimization using ten benchmark functions and then applied for optimal robot path planning in a simulated environment. Simulation results show that the proposed IPSO-GWO is able to find an optimal path much faster than traditional PSO-GWO based methods.

20.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203796

RESUMO

This paper proposes a general hierarchical dispatching strategy of mine water, with the aim of addressing the problems of low reuse rate of coal mine water, and insufficient data analysis. First of all, water quality and quantity data of the Narim River No. 2 mine were used as the research object; the maximum reuse rate of mine water and the system operation rate comprised the objective function; and mine water quality information, mine water standard, and mine water treatment speed were the constraints. A multi-objective optimization scheduling mathematical model of water supply system was established. Then, to address the problems of premature convergence and ease of falling into a local optimum in the iterative process of particle swarm optimization, the basic particle swarm optimization was improved. Using detailed simulation research, the superiority of the improved algorithm was verified. Eventually, the mine water grading dispatching strategy proposed in this paper is compared with the traditional dispatching method. The results show that the hierarchical dispatching system can significantly improve the mine water reuse rate and system operating efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA