Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Psychiatry Investigation ; : 379-385, 2019.
Article in English | WPRIM | ID: wpr-760935

ABSTRACT

OBJECTIVE: To evaluate the association of GRIK2 and NLGN1 with autism spectrum disorder in a Chinese population. METHODS: We performed spatio-temporal expression analysis of GRIK2 and NLGN1 in the developing prefrontal cortex, and examined the expression of the genes in ASD cases and healthy controls using the GSE38322 data set. Following, we performed a case-control study in a Chinese population. RESULTS: The analysis using the publicly available expression data showed that GRIK2 and NLGN1 may have a role in the development of human brain and contribute to the risk of ASD. Later genetic analysis in the Chinese population showed that the GRIK2 rs6922753 for the T allele, TC genotype and dominant model played a significant protective role in ASD susceptibility (respectively: OR=0.840, p=0.023; OR=0.802, p=0.038; OR=0.791, p=0.020). The NLGN1 rs9855544 for the G allele and GG genotype played a significant protective role in ASD susceptibility (respectively: OR=0.844, p=0.019; OR=0.717, p=0.022). After adjusting p values, the statistical significance was lost (p>0.05). CONCLUSION: Our results suggested that GRIK2 rs6922753 and NLGN1 rs9855544 might not confer susceptibility to ASD in the Chinese population.


Subject(s)
Humans , Alleles , Asian People , Autism Spectrum Disorder , Autistic Disorder , Brain , Case-Control Studies , Dataset , Genotype , Glutamic Acid , Prefrontal Cortex , Receptors, Ionotropic Glutamate
2.
International Neurourology Journal ; : 228-236, 2015.
Article in English | WPRIM | ID: wpr-88077

ABSTRACT

PURPOSE: Alpha1 (alpha1)-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, alpha1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an alpha1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats. METHODS: The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors, in hippocampal CA1 neurons. RESULTS: Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin. CONCLUSIONS: Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder.


Subject(s)
Animals , Rats , Apoptosis , Blood-Brain Barrier , Brain , Central Nervous System , Dentate Gyrus , Hippocampus , In Situ Nick-End Labeling , Learning , Lower Urinary Tract Symptoms , Memory , Memory, Short-Term , N-Methylaspartate , Neurons , Patch-Clamp Techniques , Receptors, Ionotropic Glutamate , Receptors, Kainic Acid , Receptors, N-Methyl-D-Aspartate , Urinary Bladder, Overactive
3.
Korean Journal of Psychopharmacology ; : 149-154, 2014.
Article in Korean | WPRIM | ID: wpr-15891

ABSTRACT

Dopamine has long time considered as the main player in drug addiction. However, growing body of literature strongly supports a role for glutamate in addiction. 2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, one of the ionotropic glutamate receptors, are known to be involved in different forms of synaptic plasticity, and behaviors such as learning and memory. As drug addiction is a chronic brain disease with characteristics of craving and relapse, it is often considered as a maladapted form of drug-induced long-term memory. Experimental evidence strongly indicates that AMPA receptor has an important role in the development of drug addiction. Studies with animal models of drug addiction, such as behavioral sensitization and drug self-administration, demonstrate that AMPA receptor-mediated synaptic plasticity may underlie the neuronal mechanisms for such important characteristics of addiction as drug craving.


Subject(s)
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Brain Diseases , Diethylpropion , Dopamine , Glutamic Acid , Learning , Memory , Memory, Long-Term , Models, Animal , Neurons , Nucleus Accumbens , Plastics , Receptors, AMPA , Receptors, Ionotropic Glutamate , Recurrence , Illicit Drugs , Substance-Related Disorders
4.
Annals of Dermatology ; : 382-388, 2009.
Article in English | WPRIM | ID: wpr-174308

ABSTRACT

BACKGROUND: Ionotropic glutamate receptors of the N-methyl-D-aspartate receptor (NMDAR) type are expressed on keratinocytes and play a role in the proliferation, differentiation, and cornification of keratinocytes. However, the expression profile of NMDAR and its role in cutaneous malignancy is unclear. OBJECTIVE: We analyzed the expression of NMDAR-1 in cutaneous squamous cell carcinoma (SCC) and investigated the relationship between NMDAR-1 expression and clinicopathological parameters. METHODS: Thirty-two patients with biopsy-proven cutaneous SCC were enrolled in this study. Each patient was analyzed for tumor diameter, location, local recurrence, and metastasis by conducting a chart review. The SCC specimens were histologically divided into differentiated and undifferentiated groups based on Broders' system. NMDAR-1 expression was examined by performing immunohistochemistry, and the relative staining intensity in the SCCs was graded into 5 levels. According to the staining intensity of NMDAR-1, the specimens were categorized into two groups: the higher group and the lower group. RESULTS: Fifteen (88%) of 17 tumors in the higher group were differentiated SCC, whereas 14 (93%) of 15 tumors in the lower group were undifferentiated SCC. In addition, NMDAR-1 expression was inversely correlated with metastasis (p=0.049). Local recurrence was associated with a lower staining intensity, but the results were not statistically significant. CONCLUSION: Our results demonstrate that NMDAR-1 expression in cutaneous SCC is significantly correlated with its differentiation and metastasis. Therefore, it may be a prognostic indicator for cutaneous SCC.


Subject(s)
Humans , Carcinoma, Squamous Cell , Immunohistochemistry , Keratinocytes , N-Methylaspartate , Neoplasm Metastasis , Receptors, Ionotropic Glutamate , Recurrence
5.
Acta Physiologica Sinica ; (6): 299-304, 2009.
Article in English | WPRIM | ID: wpr-302448

ABSTRACT

In the present study, the modulatory effect of AMPA receptors on gamma-aminobutyric acid (GABA) transporter current was investigated on enzymatically isolated horizontal cells of carp retina. The GABA transporter current elicited by 1 mmol/L GABA was decreased immediately after pre-application of AMPA (30 mumol/L or 3 mmol/L) for 50 s. Application of 10 mmol/L BAPTA in intracellular solution inhibited the suppression effect of AMPA on GABA transporter current. The suppression effect induced by co-application of 3 mmol/L AMPA and 3 mmol/L NMDA was similar to that of 3 mmol/L AMPA or 3 mmol/L NMDA alone. These results suggest that the activation of AMPA receptors inhibits GABA transporter-mediated current by affecting intracellular Ca(2+) processes in the retinal horizontal cells, which is identical with the modulatory effect of NMDA receptors on GABA transporters.


Subject(s)
Animals , Carps , Egtazic Acid , Pharmacology , GABA Plasma Membrane Transport Proteins , Metabolism , Receptors, Ionotropic Glutamate , Metabolism , Retinal Horizontal Cells , Metabolism , gamma-Aminobutyric Acid , Pharmacology
6.
Rev. cienc. salud (Bogotá) ; 5(2): 92-105, sep. 2007. ilus, tab
Article in Spanish | LILACS, COLNAL | ID: lil-635897

ABSTRACT

El receptor ionotrópico de glutamato activado por N-metil-D-aspartato (iGluR-NMDA) es un complejo macromolecular heteromultimérico constituido por entre 3 y 5 subunidades de tres diferentes tipos, a saber: NR1, NR2A-D y NR3A y B. Se ha demostrado su participación activa en prácticamente todos los procesos fisiológicos, patológicos e intermediarios de efectos farmacológicos que ocurren en las células de tejidos excitables, inclusive se ha reportado su presencia en otros tejidos no excitables. En el sistema nervioso central (SNC) participa en los procesos de aprendizaje, memoria, plasticidad, diferenciación, migración de la célula neural y apoptosis. Además, en los eventos de índole farmacológica se ha demostrado su intervención en excitotoxicidad, drogadicción y alcoholismo. Surge entonces la pregunta de cómo un mismo complejo macromolecular puede participar en tantos y tan diversos procesos. La revisión de literatura en la que se demuestra la interacción del iGluR-NMDA con proteínas de señalización, soporte, adaptadoras, moduladoras, de adhesión celular, de citoesqueleto y enzimas reporta un conjunto de más de 160 moléculas que participan en las cascadas que generan las señales a diferentes niveles de interacción y con diferentes sustratos. En este artículo se presenta un modelo predictivo estructural y funcional que permite distinguir, por lo menos, tres rutas diferenciadas de señalización.


The ionotropic glutamate receptor activated by N-methyl-D-aspartate (iGluR-NMDA) is a multiheteromeric complex constituted from by three to five subunits belonging to by three different kinds of subunits known as NR1, NR2AD y NR3A y B. It is well established the participation of iGluR-NMDA complexes in a broad range of physiological, pathological, and as intermediary in pharmacological processes of neural systems. In the CNS, iGluR-NMDA participates in learning, memory, plasticity, neural differentiation, neural migration, and apoptosis, among others. In addition, from the pharmacological point of view the iGluR-NMDA is playing a role in excitotoxicity, drugs-addiction and other dependences. How the same complex can participate in a significant broad group of neural activities is a valid question after a literature review. A carefully analysis shows that iGluR-NMDA interacts, at some level, with a big number of intracellular proteins belonging to signaling proteins family, support proteins, modulator proteins, cytoskeleton, and enzymes, resulting in interactions with more than a 160 proteins, at different interaction levels and acting with intracellular proteins. In this work we report a proposal for a model of differential signaling cascade pathways generated by the iGluR-NMDA gating. The model shows at least the possibility of three different signaling pathways.


Subject(s)
Humans , Homeostasis , N-Methylaspartate , Receptors, Ionotropic Glutamate , Forecasting , Neuronal Plasticity
7.
Korean Journal of Anesthesiology ; : 504-512, 2007.
Article in Korean | WPRIM | ID: wpr-193260

ABSTRACT

BACKGROUND: Glutamate is the predominant excitatory neurotransmitter in the central and peripheral nervous system and has known to be involved in nociceptive transmission and central sensitization. It acts through ligand gated ionotropic glutamate receptors (iGluRs) and G protein-coupled metabotropic glutamate receptors (mGluRs). And mGlu 1, 5 receptors have been recognized to play a role in nociceptive processing. We want to investigate whether central mGluR1 and mGluR5 antagonists could reverse the behavioral signs of weight bearing and secondary mechanical hyperalgesia induced by chronic knee joint inflammation. METHODS: MGluR1 antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA: 25, 50, 100 microM/10 microliter, n = 7 per group) and selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP: 25, 100, 200 nM/10 microliter, n = 7 per group) were injected intrathecally 5 days after Complete Freund's Adjuvant (CFA, 150 microliter) injection into knee joint and behavior signs of weight bearing and secondary mechanical hyperalgesia were observed. RESULTS: CFA significantly reduced the magnitude of right hind paw weight bearing and decreased the withdrawal threshold to mechanical stimulation compared to contralateral side. Higher dose of AIDA (100 microM) significantly reversed the reduction of weight bearing, but MPEP did not. AIDA reversed the decrease of the paw withdrawal threshold to mechanical stimulation at the dosage of 50 and 100 microM respectively. MPEP significantly increased the paw withdrawal threshold to mechanical stimulation in a dose dependent manner. CONCLUSIONS: Group I mGluRs were involved in maintenance of primary and secondary mechanical hyperalgesia.


Subject(s)
Animals , Rats , Arthritis , Central Nervous System Sensitization , Freund's Adjuvant , Glutamic Acid , Hyperalgesia , Inflammation , Knee Joint , Knee , Neurotransmitter Agents , Peripheral Nervous System , Receptors, Ionotropic Glutamate , Receptors, Metabotropic Glutamate , Weight-Bearing
8.
The Korean Journal of Physiology and Pharmacology ; : 301-305, 2004.
Article in English | WPRIM | ID: wpr-727785

ABSTRACT

This study examined the effects of N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate on basal and electrically-evoked release of acetylcholine (ACh) from the rat hippocampal and striatal slices which were preincubated with [3H]choline. Unexpectedly, the basal and evoked ACh release were not affected at all by the treatment with NMDA (3~100microM), AMPA (1~100microM) or kainate (1~100microM) in hippocampal slices. However, in striatal slices, under the Mg2 -free medium, 30microM NMDA increased the basal ACh release with significant decrease of the electrically- evoked releases. The treatment with 1microM MK-801 not only reversed the 30microM NMDA-induced decrease of the evoked ACh release, but also attenuated the facilitatory effect of 30microM NMDA on the basal ACh release. The treatment with either 30microM AMPA or 100microM kainate increased the basal ACh release without any effects on the evoked release. The treatment with 10microM NBQX abolished the AMPA- or kainate-induced increase of the basal ACh release. Interestingly, NBQX significantly attenuated the evoked release when it was treated with AMPA, although it did not affect the evoked release alone without AMPA. These observations demonstrate that in hippocampal slices, ionotropic glutamate receptors do not modulate the ACh release in cholinergic terminals, whereas in striatal slices, activations of ionotropic glutamate receptors increase the basal ACh release though NMDA may decrease the electrically-evoked ACh release.


Subject(s)
Animals , Rats , Acetylcholine , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Diethylpropion , Dizocilpine Maleate , Hippocampus , Kainic Acid , N-Methylaspartate , Receptors, Ionotropic Glutamate
9.
The Korean Journal of Physiology and Pharmacology ; : 375-379, 2003.
Article in English | WPRIM | ID: wpr-727390

ABSTRACT

Ca2+ influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca2+ influx rises prior to myoblast fusion. Recently, several studies suggested that NMDA receptors may be involved in Ca2+ mobilization of muscle, and that Ca2+ influx is mediated by NMDA receptors in C2C12 myoblasts. Here, we report that other types of ionotropic glutamate receptors, non-NMDA receptors (AMPA and KA receptors), are also involved in Ca2+ influx in myoblasts. To explore which subtypes of non-NMDA receptors are expressed in C2C12 myogenic cells, RT-PCR was performed, and the results revealed that KA receptor subunits were expressed in both myoblasts and myotubes. However, AMPA receptor was not detected in myoblasts but expressed in myotubes. Using a Ca2+ imaging system, Ca2+ influx mediated by these receptors was directly measured in a single myoblast cell. Intracellular Ca2+ level was increased by KA, but not by AMPA. These results were consistent with RT-PCR data. In addition, KA-induced intracellular Ca2+ increase was completely suppressed by treatment of nifedifine, a L-type Ca2+ channel blocker. Furthermore, KA stimulated myoblast fusion in a dose-dependent manner. CNQX inhibited not only KA-induced myoblast fusion but also spontaneous myoblast fusion. Therefore, these results suggest that KA receptors are involved in intracellular Ca2+ increase in myoblasts and then may play an important role in myoblast fusion.


Subject(s)
6-Cyano-7-nitroquinoxaline-2,3-dione , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Kainic Acid , Muscle Fibers, Skeletal , Myoblasts , Receptors, AMPA , Receptors, Ionotropic Glutamate , Receptors, Kainic Acid , Receptors, N-Methyl-D-Aspartate
10.
Journal of the Korean Neurological Association ; : 179-186, 2002.
Article in Korean | WPRIM | ID: wpr-193590

ABSTRACT

BACKGROUND: Excitotoxicity and epileptogenesis have often been associated with glutamate receptor activation. Some evidence indicates that selective down regulation of AMPA receptor may be the mechanism of delayed neuronal cell death in the hippocampus. METHODS: We used in situ hybridization to examine the hybridization density (HD) of NMDA and AMPA receptors on excitotoxicity and epileptogenesis in the hippocampus of the kainic acid (KA)-induced rat seizure model. Some Sprague-Dawley rats were injected with KA, and others with MK-801 prior to KA injection. The rats were killed at 8 hours or 4 weeks after KA or MK-801/KA injection. HD of [3H]MK-801 and [3H]AMPA bind-ing in subfields of the hippocampus was measured by an image analyzer. RESULTS: After 8 hours of KA injection, [3H]MK-801 binding was increased in CA1 and CA3, and decreased in dentate gyrus, and [3H]AMPA binding was decreased in all of CA1, CA3 and fascia dentata, and pretreatment of MK-801 did not affect [3H]AMPA binding in all of CA1, CA3 and dentate gyrus. After 4 weeks, both [3H]MK-801 and [3H]AMPA binding were prominently increased in inner molecular layer of dentate gyrus. CONCLUSIONS: Glutamate receptors, especially NMDA receptor, were associ-ated with excitotoxicity in the hippocampus but the selective down regulation of GluR2 subunit of AMPA receptor without NMDA receptor activation may not be sufficient to cause excitotoxic neuronal cell death in CA1 and CA3. In addition, the synaptic reorganization in inner molecular layer of dentate gyrus was proved to be chronically hyperex-citable in function and may contribute epileptogenesis.


Subject(s)
Animals , Rats , Autoradiography , Cell Death , Dentate Gyrus , Dizocilpine Maleate , Down-Regulation , Glutamic Acid , Hippocampus , In Situ Hybridization , Kainic Acid , N-Methylaspartate , Neurons , Rats, Sprague-Dawley , Receptors, AMPA , Receptors, Glutamate , Receptors, Ionotropic Glutamate , Seizures
SELECTION OF CITATIONS
SEARCH DETAIL