Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Chinese Journal of Biotechnology ; (12): 831-842, 2022.
Article in Chinese | WPRIM | ID: wpr-927748

ABSTRACT

Promoter is an important genetic tool for fine-tuning of gene expression and has been widely used for metabolic engineering. Corynebacterium glutamicum is an important chassis for industrial biotechnology. However, promoter libraries that are applicable to C. glutamicum have been rarely reported, except for a few developed based on synthetic sequences containing random mutations. In this study, we constructed a promoter library based on the native promoter of odhA gene by mutating the -10 region and the bystanders. Using a red fluorescent protein (RFP) as the reporter, 57 promoter mutants were screened by fluorescence imaging technology in a high-throughput manner. These mutants spanned a strength range between 2.4-fold and 19.6-fold improvements of the wild-type promoter. The strongest mutant exhibited a 2.3-fold higher strength than the widely used strong inducible promoter Ptrc. Sequencing of all 57 mutants revealed that 55 mutants share a 1-4 bases shift (4 bases shift for 68% mutants) of the conserved -10 motif "TANNNT" to the 3' end of the promoter, compared to the wild-type promoter. Conserved T or G bases at different positions were observed for strong, moderate, and weak promoter mutants. Finally, five promoter mutants with different strength were employed to fine-tune the expression of γ-glutamyl kinase (ProB) for L-proline biosynthesis. Increased promoter strength led to enhanced L-proline production and the highest L-proline titer of 6.4 g/L was obtained when a promoter mutant with a 9.8-fold higher strength compared to the wild-type promoter was used for ProB expression. The use of stronger promoter variants did not further improve L-proline production. In conclusion, a promoter library was constructed based on a native C. glutamicum promoter PodhA. The new promoter library should be useful for systems metabolic engineering of C. glutamicum. The strategy of mutating native promoter may also guide the construction of promoter libraries for other microorganisms.


Subject(s)
Corynebacterium glutamicum/metabolism , Gene Library , Metabolic Engineering , Promoter Regions, Genetic/genetics
2.
Article in Chinese | WPRIM | ID: wpr-888362

ABSTRACT

OBJECTIVE@#To screen proteins interacting with ring finger protein 216(RNF216) through yeast two hybrid experiment, and further clarify the role of RNF216 in the pathogenesis of gonadotropin-releasing hormone deficiency.@*METHODS@#A recombinant expression vector pGBKT7-RNF216 was constructed and transformed into yeast Y2HGold, which was hybridized with a human cDNA library in order to screen proteins interacting with RNF216. The interaction was verified in yeast Y2HGold.@*RESULTS@#A recombinant expression vector pGBKT7-RNF216 was successfully constructed and expressed in yeast Y2HGold. Filamin B (FLNB) was identified by yeast two hybrid experiment, and their interaction was verified in yeast Y2HGold.@*CONCLUSION@#An interaction between FLNB and RNF216 was identified through yeast two hybrid experiment. RNF216 may affect the proliferation and migration of GnRH neurons by regulating FLNB or FLNB/FLNA heterodimers.


Subject(s)
Gene Library , Gonadotropin-Releasing Hormone/genetics , Humans , Proteins , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
3.
Chinese Journal of Biotechnology ; (12): 163-177, 2021.
Article in Chinese | WPRIM | ID: wpr-878551

ABSTRACT

Directed evolution is a cyclic process that alternates between constructing different genes and screening functional gene variants. It has been widely used in optimization and analysis of DNA sequence, gene function and protein structure. It includes random gene libraries construction, gene expression in suitable hosts and mutant libraries screening. The key to construct gene library is the storage capacity and mutation diversity, to screen is high sensitivity and high throughput. This review discusses the latest advances in directed evolution. These new technologies greatly accelerate and simplify the traditional directional evolution process and promote the development of directed evolution.


Subject(s)
Base Sequence , Directed Molecular Evolution , Gene Library , Mutation , Proteins/genetics
4.
Article in Chinese | WPRIM | ID: wpr-828050

ABSTRACT

Polyphenol oxidase(PPO) is an important antioxidant enzyme in plants. It has the functions of scavenging active oxygen and synthesizing phenols, lignin, and plant protection factors, and can enhance the plant's resistance to stress and resistance to pests and diseases. Our previous research found that Salvia miltiorrhiza PPO gene can positively regulate salvianolic acid B synthesis. In order to further explore the mechanism, a pGBKT7-PPO bait vector was constructed using the cloned S. miltiorrhiza polyphenol oxidase gene(SmPPO, GenBank accession number: KF712274.1), and verified that it had no self-activation and no toxicity. The titer of S. miltiorrhiza cDNA library constructed by our laboratory was 4.75 × 107 cfu·mL~(-1), which met the requirements for library construction. Through yeast two-hybrid test, 22 proteins that could interact with SmPPO were screened. Only yeast PAL1 and TAT interacted with SmPPO through yeast co-transformation verification. Further verification was performed by bimolecular fluorescence complementary detection(BiFC). Only TAT and SmPPO interacted, so it meant that TAT and SmPPO interacted. TAT and SmPPO were truncated according to the domain, respectively. The first 126 amino acids of SmPPO and tyrosine amino transferase(TAT) were obtained to interact on the cell membrane and chloroplast. SmPPO was obtained by subcellular localization test, which was mainly loca-lized on the nucleus and cell membrane; TAT was localized on the cell membrane. Real-time quantitative PCR results showed that the SmPPO gene was mainly expressed in roots and stems; the TAT gene was expressed in roots, and the expression level in stems and flowers was low. This article lays a solid foundation for the in-depth study of the molecular mechanism of the interaction of S. miltiorrhiza SmPPO and TAT to regulate the synthesis of phenolic substances.


Subject(s)
Catechol Oxidase , Gene Expression Regulation, Plant , Gene Library , Plant Proteins , Genetics , Plant Roots , Salvia miltiorrhiza , Genetics
5.
Article in Chinese | WPRIM | ID: wpr-773547

ABSTRACT

OBJECTIVE@#To optimize DNA library construction in non-crosslinked chromatin immunoprecipitation coupled with next-generation sequencing (Native ChIP-seq) to obtain high-quality Native ChIP-seq data.@*METHODS@#Human nasopharyngeal carcinoma HONE1 cell lysate was digested with MNase for release of the nucleosomes, and the histone-DNA complexes were immunoprecipitated with specific antibodies. The protein component in the precipitate was digested with proteinase K followed by DNA purification; the DNA library was constructed for sequence analysis.@*RESULTS@#Compared with the conventional DNA library construction, Tn5 transposase method allowed direct enrichment of the target DNA after Tn5 fragmentation, which was simple, time-saving and more efficient. The IGV visualized map showed that the information obtained by the two library construction methods was consistent. The sequencing data obtained by the two methods revealed more signal enrichment with Tn5 transposase library construction than with the conventional approach. H3K4me3 ChIP results showed a good reproducibility after Tn5 transposase library construction with a signal-to-noise ratio above 50%.@*CONCLUSIONS@#Tn5 transposase method improves the efficiency of DNA library construction and the results of subsequent sequence analysis, and is especially suitable for detecting histone modification in the DNA to provide a better technical option for epigenetic studies.


Subject(s)
Chromatin Immunoprecipitation , DNA , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Sequence Analysis, DNA
6.
Article in Chinese | WPRIM | ID: wpr-773243

ABSTRACT

With the development of various biotechnology,the research on molecular genetics of medicinal plants has gradually deepened. In this paper,the research system of molecular genetics of medicinal plants was proposed for the first time,which was elaborated from the aspects of genetic resources,genome,gene function and research methods. The application fields of medicinal plant mainly contain species identification,molecular breeding and biosynthesis. The research directions of molecular genetics of medicinal plants in genetic resources,model platform,synthetic biology and molecular breeding were put forward,which include 1 000 genome projects of medicinal plants,model species and mutant libraries,gene original libraries of heterologous synthetic systems,construction gene original library and specific chassis cells in heterologous synthesis system of active ingredient,breeding of new varieties of medicinal plants with high active ingredient and high resistance based on molecular markers andtransgenes.


Subject(s)
Biotechnology , Gene Library , Genetic Markers , Genome, Plant , Molecular Biology , Plant Breeding , Plants, Medicinal , Genetics , Research , Transgenes
7.
Article in Chinese | WPRIM | ID: wpr-771398

ABSTRACT

Trichoderma reesei Rut-C30 is widely used in industrial cellulase production, and development of cellulase hyper-producer is of great importance for economic lignocellulosic biorefinery. In this study, T. reesei Rut-C30 was engineered with an artificial zinc finger proteins (AZFPs) library. Two mutants T. reesei M1 and M2 with improved cellulase production were obtained. Compared to the parent strain, the filter paper activity (FPase) of T. reesei M1 and M2 increased 100% and 53%, respectively. In addition, the total amount of extracellular protein from the M1 mutant increased 69%, whereas the endo-β-glucanase (CMCase) activity of the M2 mutant is 64% higher compared to the parental strain. Furthermore, RT-qPCR analysis showed that the major cellulase genes exhibited significantly increased expression in both mutants, but different patterns were observed in the two mutants. On the other hand, the cellulase transcriptional repressor ace1 was down-regulated in both mutants, but the transcription level of the activator xyr1 was only up-regulated in the strain M1. These results demonstrated that different AZFPs exert diverse regulatory mechanisms on cellulase production in T. reesei. Analysis of the target genes of AZFPs from T. reesei M1 and M2 will not only benefit further exploration of the regulatory mechanisms of cellulase biosynthesis in T. reesei, but also enable development of cellulase hyper-producing strains by metabolic engineering.


Subject(s)
Cellulase , Gene Library , Transcription Factors , Trichoderma , Zinc Fingers
8.
São Paulo; s.n; s.n; 2019. 193 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-987685

ABSTRACT

A frequência de Hipercolesterolemia Familial (HF) ainda é desconhecida no Brasil, principalmente pela ausência de estudos com caracterização genotípica associada à fenotípica. Os dados epidemiológicos existentes se baseiam apenas no fenótipos e carecem do diagnóstico molecular confirmatório. O objetivo do presente estudo foi identificar as principais causas genéticas da HF em pacientes diagnosticados fenotipicamente através de um painel exômico com 61 genes a fim de contribuir para um sistema de confirmação do diagnostico molecular em uma amostra da população brasileira. Para isso foram incluídos 141 pacientes, não aparentados, portadores de HF atendidos pelo setor de dislipidemias do Instituto Dante Pazzanese de Cardiologia, Laboratório de Analises Clinicas da Faculdade de Ciências Farmacêuticas da Universidade Federal do Rio Grande do Norte e do Programa Hipercol Brasil do Instituto do Coração. As amostras de sangue periférico foram obtidas para determinações fenotípicas laboratoriais e extração de DNA genômico. A biblioteca de DNA foi construída utilizando o kit Nextera® Rapid Capture Enrichment Custom enriquecendo os éxons de 61 genes que direta ou indiretamente estão relacionados com metabolismo do colesterol. O ultrassequenciamento foi realizado utilizando kit MiSeq Reagent (300 a 500 ciclos) na plataforma MiSeq (Illumina). Os resultados de sequenciamento foram inicialmente alinhados a uma sequência referência e analisados para eliminação de falsos positivos, segundo os parâmetros de qualidade, tais como: cobertura mínima de 30x, frequência do alelo alterado maior que 20% e diferença da distribuição das leituras entre as sequências nucleotídicas menor que 15%. Foram identificadas 472 diferentes variantes em 56 dos genes presentes no painel, sendo 45 consideradas como não descritas. Nos genes APOA1, APOA2, LIPC, RBP4 e TIMP1 não foram observadas variantes dentro dos critérios estabelecidos. Das variantes observadas 25 identificadas em 30 (21,2%) pacientes já tinha sido publicadas em relação à HF nos três principais genes (LDLR, APOB e PCSK9), confirmando o diagnóstico. Foi caracterizado genotipicamente outras dislipidemias primárias em 7 pacientes, sem diagnóstico molecular de HF, através de variantes identificadas no ultrassequenciamento em outros genes. Dos 104 pacientes que não possuíam nenhuma variante já previamente caracterizada, 69 possuíam variantes relacionados com o metabolismo do colesterol. As variantes sem patogenicidade conhecida foram avaliadas através de ferramentas de predição in silico e 22 delas possuíam características sugestivas de patogenicidade em pelo menos 4 das ferramentas utilizadas, duas delas também mostraram alterar a estrutura da proteína segundo análises de docking molecular. Foram identificadas também 223 variantes em região não transcritas (UTR). Quando realizada as análises estatística de todas as variantes identificadas, observamos associação de 13 variantes com concentrações mais elevadas de colesterol da LDL, 5 com concentrações mais elevadas de apolipoproteina B-100, 5 com concentrações mais elevadas de colesterol total, 6 com presença de arco córneo, 2 com manifestação de xantelasmas, 2 com ausência de xantomas e 3 com a presença de doença arterial coronariana. Dessas 6 variantes já haviam sido previamente descritas com HF ou algum outro fenótipo associado e 2 não tinham citação na literatura pesquisada, mas possuíam característica patogênica para a proteína segundo as ferramentas de predição in silico. Este estudo permitiu a identificação das causas genéticas da HF em pacientes brasileiros diagnosticados fenotipicamente, mostrando que a técnica escolhida permitiu caracterizar 21,2% dos pacientes. Além disso, foi possível identificar outras dislipidemias primárias e caracterizar algumas variantes que, apesar de necessitarem serem validadas, indicam uma possível associação com a HF, aumentando o esclarecimento do fenótipo com o genótipo para 74,5%. Este estudo também possibilitou a identificação de novas variantes que devem ser avaliadas para confirmar associação com a doença e utilizar para o diagnóstico propondo um novo painel poligênico


The frequency of Familial Hypercholesterolemia (FH) is still unknown in Brazil, mainly due to the absence of studies with genotypic characterization associated with phenotype. Existing epidemiological data are based only on the phenotypes and lack the confirmatory molecular diagnosis. The aim of the present study was to identify main genetic causes of FH in patients diagnosed phenotypically through an exomic panel with 61 genes in order to contribute to a system of confirmation molecular diagnosis in a sample of the Brazilian population. To this end, 141 non-related patients with FH treated by the dyslipidemia sector of the Institute Dante Pazzanese of Cardiology, Clinical Analysis Laboratory of the Faculty of Pharmaceutical Sciences of the University Federal of Rio Grande do Norte and the Hipercol Brazil Program of the Heart Institute. Peripheral blood samples were obtained for laboratory phenotypic determinations and extraction of genomic DNA. The DNA library was constructed using the Nextera® Rapid Capture Enrichment Custom kit, enriching with éxons of 61 genes that are directly or indirectly related to cholesterol metabolism. Ultrasequencing was performed using MiSeq Reagent kit (300 to 500 cycles) on the MiSeq platform (Illumina). The sequencing results were initially aligned to a reference sequence and analyzed for false positive elimination according to quality parameters such as: minimum coverage of 30x, altered allele frequency greater than 20%, and difference in the distribution of reads between sequences nucleotides less than 15%. 472 different variants were identified in 56 of the genes present in the panel, of which 45 were considered not described. In the APOA1, APOA2, LIPC, RBP4 and TIMP1 genes no variants were observed within the established criteria. In 25 of the variants observed presents in 30 (21.2%) patients had already been published in relation to FH in the three main genes (LDLR, APOB and PCSK9), confirming the diagnosis. Other primary dyslipidemias were caracterized genotypically in 7 patients, without molecular diagnosis of HF, through variants identified in ultrasequencing in other genes. Of the 104 patients who did not have any previously characterized variant, 69 had variants related to cholesterol metabolism. The variants without known pathogenicity were evaluated using in silico prediction tools and 22 of them had characteristics suggestive of pathogenicity at least 4 of the tools used, two of them also showed to alter the structure of the protein according to molecular docking analyzes. Were also identified 223 non-transcribed region (UTR) variants. Statistical analysis of all the variants identified showed association of 13 variants with higher concentrations of LDL cholesterol, 5 with higher concentrations of apolipoprotein B-100, 5 with higher concentrations of total cholesterol, 6 with presence of an arc corneal, 2 with manifestation of xanthelasms, 2 with absence of xanthomas and 3 with the presence of coronary artery disease. Of these 6 variants had previously been described with HF or some other associated phenotype and 2 had no citation in the researched literature, but had a pathogenic characteristic for the protein according to in silico prediction tools. This study allowed the identification of the genetic causes of FH in Brazilian patients diagnosed phenotypically, showing that the technique chosen allowed to characterize 21.2% of the patients. In addition, it was possible to identify other primary dyslipidemias and to characterize some variants that, although they need to be validated, indicate a possible association with HF, increasing the clarification of the phenotype with the genotype to 74.5%. This study also allowed the identification of new variants that should be evaluated to confirm association with the disease and to use for the diagnosis proposing a new polygenic panel


Subject(s)
Humans , Male , Female , Genes/genetics , Hyperlipoproteinemia Type II/genetics , Apolipoproteins B/analysis , Gene Library , Proprotein Convertase 9/analysis
9.
Article in English | WPRIM | ID: wpr-772964

ABSTRACT

Metagenomes from uncultured microorganisms are rich resources for novel enzyme genes. The methods used to screen the metagenomic libraries fall into two categories, which are based on sequence or function of the enzymes. The sequence-based approaches rely on the known sequences of the target gene families. In contrast, the function-based approaches do not involve the incorporation of metagenomic sequencing data and, therefore, may lead to the discovery of novel gene sequences with desired functions. In this review, we discuss the function-based screening strategies that have been used in the identification of enzymes from metagenomes. Because of its simplicity, agar plate screening is most commonly used in the identification of novel enzymes with diverse functions. Other screening methods with higher sensitivity are also employed, such as microtiter plate screening. Furthermore, several ultra-high-throughput methods were developed to deal with large metagenomic libraries. Among these are the FACS-based screening, droplet-based screening, and the in vivo reporter-based screening methods. The application of these novel screening strategies has increased the chance for the discovery of novel enzyme genes.


Subject(s)
Animals , Bacteria , Enzymes , Genetics , Gene Library , High-Throughput Screening Assays , Methods , Metagenome , Genetics , Metagenomics , Methods , Plants
10.
Article in Chinese | WPRIM | ID: wpr-771711

ABSTRACT

The study is aimed to construct high quality Salvia miltiorrhiza cDNA library and obtain the SmJAZ8 gene of S. miltiorrhiza by yeast two-hybrid system. In this study, full-length cDNA was synthesized from roots, stems, leaves, flowers and hairy roots of S. miltiorrhiza. The full-length cDNA library was synthesized by SMART method and constructed with DSN homogenization technique. The results showed that the library capacity was 1.45×10⁶, the recombination rate was 100%, and the average size of the insert was 500-2 000 bp. The recombinant vector of pDEST-pGADT7-SmJAZ8 was constructed and transformed into Y2HGold strain. The interaction protein was screened by yeast two-hybrid system. The DnaJ protein and UBQ protein were screened by yeast two-hybrid system. This study has successfully constructed a full-length cDNA library of S. miltiorrhiza, and laid the foundation for the follow-up study on functional gene screening and gene function of S. miltiorrhiza.


Subject(s)
Co-Repressor Proteins , Genetics , DNA, Complementary , Gene Library , Plant Proteins , Genetics , Salvia miltiorrhiza , Genetics , Two-Hybrid System Techniques
11.
Protein & Cell ; (12): 799-807, 2018.
Article in English | WPRIM | ID: wpr-757994

ABSTRACT

Virus infection induces the production of type I interferons (IFNs). IFNs bind to their heterodimeric receptors to initiate downstream cascade of signaling, leading to the up-regulation of interferon-stimulated genes (ISGs). ISGs play very important roles in innate immunity through a variety of mechanisms. Although hundreds of ISGs have been identified, it is commonly recognized that more ISGs await to be discovered. The aim of this study was to identify new ISGs and to probe their roles in regulating virus-induced type I IFN production. We used consensus interferon (Con-IFN), an artificial alpha IFN that was shown to be more potent than naturally existing type I IFN, to treat three human immune cell lines, CEM, U937 and Daudi cells. Microarray analysis was employed to identify those genes whose expressions were up-regulated. Six hundred and seventeen genes were up-regulated more than 3-fold. Out of these 617 genes, 138 were not previously reported as ISGs and thus were further pursued. Validation of these 138 genes using quantitative reverse transcription PCR (qRT-PCR) confirmed 91 genes. We screened 89 genes for those involved in Sendai virus (SeV)-induced IFN-β promoter activation, and PIM1 was identified as one whose expression inhibited SeV-mediated IFN-β activation. We provide evidence indicating that PIM1 specifically inhibits RIG-I- and MDA5-mediated IFN-β signaling. Our results expand the ISG library and identify PIM1 as an ISG that participates in the regulation of virus-induced type I interferon production.


Subject(s)
Cells, Cultured , Gene Library , Humans , Interferon Type I , Metabolism , Interferon-beta , Genetics , Metabolism , Proto-Oncogene Proteins c-pim-1 , Genetics , Up-Regulation
12.
Article in Korean | WPRIM | ID: wpr-718424

ABSTRACT

BACKGROUND: Research on next-generation sequencing (NGS)-based HLA typing is active. To resolve the phase ambiguity and long turn-around-time of conventional high resolution HLA typing, this study developed a NGS-based high resolution HLA typing method that can handle large-scale samples within an efficient testing time. METHODS: For HLA NGS, the condition of nucleic acid extraction, library construction, PCR mechanism, and HLA typing with bioinformatics were developed. To confirm the accuracy of the NGS-based HLA typing method, the results of 192 samples HLA typed by SSOP and 28 samples typed by SBT compared to NGS-based HLA-A, -B and -DR typing. RESULTS: DNA library construction through two-step PCR, NGS sequencing with MiSeq (Illumina Inc., San Diego, USA), and the data analysis platform were established. NGS-based HLA typing results were compatible with known HLA types from 220 blood samples. CONCLUSION: The NSG-based HLA typing method could handle large volume samples with high-throughput. Therefore, it would be useful for HLA typing of bone marrow donation volunteers.


Subject(s)
Bone Marrow , Computational Biology , Gene Library , Histocompatibility Testing , HLA-A Antigens , Methods , Polymerase Chain Reaction , Statistics as Topic , Volunteers
13.
São Paulo; s.n; s.n; 2018. 174 p. graf, tab, ilus.
Thesis in Portuguese | LILACS | ID: biblio-996534

ABSTRACT

O adenocarcinoma ductal pancreático (PDAC, pancreatic ductal adenocarcinoma), o tipo mais prevalente de câncer do pâncreas, é uma neoplasia extremamente agressiva e com elevado índice de letalidade. Há uma necessidade premente de identificação de vulnerabilidades no PDAC que possam ser exploradas como alvos terapêuticos, e a utilização de modelos pré-clínicos que recapitulem a complexidade biológica e heterogeneidade clínica da doença é um aspecto central para a realização dessa tarefa. Os xenotransplantes de tecido tumoral derivado de pacientes (PDX, patient-derived tumor tissue xenografts), realizados em camundongos imunodeficientes, replicam com grande similaridade as principais características do tumor original e, assim, constituem uma ferramenta valiosa para o teste de drogas e estudos funcionais. Neste trabalho, 17 amostras cirúrgicas de PDAC humano foram implantadas subcutaneamente em camundongos nude atímicos. Sete tumores (41%) foram enxertados com sucesso e têm sido mantidos em sucessivas gerações de animais receptores. O exame histológico de seis desses xenoenxertos identificou características morfológicas compatíveis com os padrões reconhecidos no PDAC humano, assim como uma consistente similaridade de seu status de diferenciação histológica em relação aos perfis verificados nos tumoresoriginais. O cultivo in vitro de células derivadas de um dos xenotumores resultou em uma nova linhagem de câncer de pâncreas, com morfologia e cinética de crescimento comparáveis às de outras linhagens celulares de câncer pancreático. O potencial tumorigênico dessa nova linhagem foi validado in vivo, com uma consistente formação de tumores após inoculação em camundongos nude. A fim de aproveitar esse recurso para a investigação de potenciais alvos terapêuticos no PDAC, um rastreamento de vulnerabilidades moleculares foi realizado por meio de silenciamento gênico em larga-escala com RNA de interferência (RNAi). Uma biblioteca lentiviral de 4492 shRNAs (short hairpin RNAs), alvejando cerca de 350 genes envolvidos na regulação epigenética, foi empregada para a triagem de genes de suscetibilidade nas células derivadas de PDX, e em outras cinco linhagens tumorais pancreáticas (AsPC-1, BxPC-3, Capan-1, MIA PaCa-2 e PANC-1). Inicialmente, foi realizada uma série de experimentos preliminares, visando à amplificação e controle de qualidade da biblioteca de silenciamento, à produção de vetores lentivirais e à padronização das condições experimentais para a transdução e seleção das células-alvo. Apenas três das linhagens avaliadas (AsPC-1, MIA PaCa-2 e PANC-1) mostraram-se permissíveis à transdução pelos vetores lentivirais, e foram assim utilizadas no screening de alvos epigenéticos. A análise dos dados obtidos nesse ensaio está em curso e os resultados serão utilizados para a definição de potenciais alvos candidatos. Em conclusão, recursos valiosos para apoiar a pesquisa sobre o câncer de pâncreas foram desenvolvidos. A coleção de PDXs estabelecida, bem como a linhagem celular recém-derivada, constituem uma fonte permanente e estável de células de PDAC para análises moleculares e estudos funcionais que busquem elucidar aspectos da doença ainda pouco compreendidos. Adicionalmente, os reagentes gerados e a expertise adquirida com os ensaiosrealizados com a biblioteca de shRNAs contra alvos epigenéticos serão de grande utilidade em futuras investigações para identificar genes com funções importantes na manutenção do fenótipo tumoral, e consequentemente com potencial para serem explorados terapeuticamente


Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is a highly aggressive and lethal neoplasm. There is a pressing need to identify vulnerabilities in PDAC suited to be exploited as therapeutic targets, and the use of preclinical models recapitulating the biological complexity and clinical heterogeneity of the disease is central to this task. Patient-derived tumor tissue xenografts (PDX), established in immunodeficient mice, replicate with great similarity the main characteristics of the original tumor and thus constitute a valuable tool for drug testing and functional studies. In this work, 17 surgical samples of human PDAC were implanted subcutaneously in athymic nude mice. Seven tumors (41%) were successfully grafted and have been maintained through successive generations of recipient animals. Histological examination of six of these xenografts identified morphological characteristics compatible with the recognized patterns of human PDAC, as well as a consistent similarity of their histological differentiation status in relation to the profiles verified in the original tumors. In vitro culture of cells derived from one of these xenografts resulted in a new pancreatic cancer cell line, with morphology and growth kinetics comparable to those of other pancreatic tumor cells. The tumorigenic potential of this freshly derived cell line was validated in vivo, with a consistent tumor formation following inoculation into nude mice. To take advantage ofthis resource to investigate potential therapeutic targets in PDAC, a screening of molecular vulnerabilities was performed through large-scale gene silencing with RNA interference (RNAi). A lentiviral library containing 4492 short hairpin RNAs (shRNAs), targeting about 350 genes involved in epigenetic regulation, was employed for the search of susceptibility genes in the PDX-derived cells and in other five pancreatic tumor cell lines (AsPC-1, BxPC -3, Capan-1, MIA PaCa-2 and PANC-1). Initially, a series of preliminary experiments were carried out aiming at the amplification and quality control of the silencing library, production of lentiviral vectors and adjustment of the experimental conditions for transduction and selection of the target cells. Only three of the cell lines evaluated (AsPC-1, MIA PaCa-2 and PANC-1) were permissible for transduction by the lentiviral vectors, and were accordingly used in the screening of epigenetic targets. The analysis of data obtained in this trial is ongoing and the results will be used for definition of potential candidate targets. In conclusion, valuable resources to support research on pancreatic cancer have been developed. The established collection of PDXs as well as the newly derived cell line constitutes a permanent and stable source of PDAC cells for molecular analyzes and functional studies seeking to elucidate aspects of this disease that are still poorly understood. Additionally, both the reagents generated and the expertise gained from the RNAi assay against epigenetic targets will have inordinate usefulness in future investigations to identify genes with major functions in maintaining the malignant phenotype, and consequently with the potential to be exploited therapeutically


Subject(s)
Animals , Female , Mice , Pancreatic Neoplasms/physiopathology , Cell Line, Tumor/classification , Heterografts/metabolism , Transplantation, Heterologous/instrumentation , Gene Library , RNA, Small Interfering , RNA Interference , Epigenomics/standards
14.
Biol. Res ; 51: 25, 2018. tab, graf
Article in English | LILACS | ID: biblio-950908

ABSTRACT

PURPOSE: This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. METHODS: Chronic pain was induced with the injection of the complete Freund's adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n = 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA library and transcriptome sequencing. Differentially expressed genes (DEGs) were identified in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. RESULTS: In total, 1748 and 2441 DEGs were identified in CFA-treated goat and sheep, respectively. The DEGs identified in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl-D-aspartate (NMDA) receptor, inflammatory response, and immune response. The DEGs identified in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response. CONCLUSIONS: Our data indicate that NMDA receptor, inflammatory response, and immune response as well as key DEGs such as CCL27, GRIA2, and SCN3A may regulate the process of pain response during chronic pain in goats. Neuroactive ligand-receptor interaction and NMDA receptor as well as GABA-related DEGs, SCN9A, and TRPV1 may modulate the process of response to pain in sheep. These DEGs may serve as drug targets for preventing chronic pain.


Subject(s)
Animals , Signal Transduction/genetics , Chronic Pain/genetics , Transcriptome/genetics , Ganglia, Spinal/physiopathology , Goats , Sheep , Signal Transduction/physiology , Gene Library , Adjuvants, Immunologic , Freund's Adjuvant , Pain Threshold/physiology , Gene Expression Profiling , Disease Models, Animal , Chronic Pain/physiopathology , Chronic Pain/chemically induced , Transcriptome/physiology , Gene Ontology
15.
Braz. j. med. biol. res ; 50(1): e5658, 2017. tab, graf
Article in English | LILACS | ID: biblio-839234

ABSTRACT

Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine linked β(1-4) present in the exoskeleton of crustaceans, insects, nematodes and fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil was functionally screened for chitinase activity leading to the isolation and identification of a chitinase gene named metachi18A. The metachi18A gene was subcloned and overexpressed in Escherichia coli BL21 and the MetaChi18A chitinase was purified by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family 18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C. Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to 9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low concentrations of colloidal chitin, indicating a possible conformational change to lead the chitin chain from the chitin-binding to the catalytic domain. The observed stability and activity of MetaChi18A over a wide range of conditions suggest that this chitinase, now characterized, may be suitable for application in the industrial processing of chitin.


Subject(s)
Chitinases/genetics , Chitin/genetics , Metagenome/genetics , Chitinases/chemistry , Chitin/chemistry , Chromatography, High Pressure Liquid , Escherichia coli , Gene Expression/genetics , Gene Library , Genetic Vectors , Hydrogen-Ion Concentration , Substrate Specificity
16.
IBJ-Iranian Biomedical Journal. 2017; 21 (5): 342-346
in English | IMEMR | ID: emr-188492

ABSTRACT

Background: Chloride channels have already been over-expressed in the different types of cancer. Chlorotoxins, as the blocking agent of these channels, have been indicated to be an effective drug against tumors. In this study, we characterized a putative chlorotoxin from a cDNA library of the venom glands obtained from the Iranian scorpion Odontobuthus doriae


Methods: A cDNA library was constructed from venom gland transcriptome of six scorpions. The cDNA encoding Odontobuthus doriae chlorotoxin was isolated from the library, and its putative peptide was characterized by some bioinformatics software such as protein blast, SignalP4.0, DISULFIND and Clustal Omega


Results: The mature Odontobuthus doriae chlorotoxin peptide has a 35-amino-acid residue and four disulfide bounds. This putative chlorotoxin is a small, compact, and stable molecule. Moreover, based on the open reading frame sequence similarity, this peptide is similar to Buthus martensii Karsch chlorotoxin-like toxin and Bml2-b neurotoxins from the Chinese scorpion Mesobuthus martensii


Conclusion: The small size of this putative chlorotoxin and its stability make it as a suitable candidate for medical and pharmacological research, especially in the cancer research


Subject(s)
Chloride Channels , Transcriptome , Neoplasms/drug therapy , Gene Library , Biodiversity
17.
Article in English | WPRIM | ID: wpr-90979

ABSTRACT

Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEP(C230X−/−) mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEP(C230X−/−) mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine.


Subject(s)
Analgesia , Animals , Brain , Codon, Nonsense , Dopamine , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Ethylnitrosourea , Fertilization in Vitro , Gene Library , Mass Screening , Mice , Morphine , Phosphotransferases , Protein Tyrosine Phosphatases , Receptors, Opioid , Reward , Illicit Drugs , Substance Withdrawal Syndrome
18.
São Paulo; s.n; s.n; 2016. 134 p. graf, ilus, tab.
Thesis in Portuguese | LILACS | ID: biblio-881509

ABSTRACT

A terapia antiagregante é comumente indicada na prevenção e tratamento de doenças cardiovasculares. A dupla antiagregação com clopidrogrel e ácido acetilsalicílico (AAS) tem sido frequentemente adotada em pacientes com Doença Arterial Coronariana (DAC), mas apresenta ineficácia em uma parcela significativa da população com genótipo de respondedores. Essa falha terapêutica nos leva a questionar se outros mecanismos moleculares podem estar influenciando na resposta a esses fármacos. Recentes estudos sugerem que pequenas sequências de RNA não codificantes denominadas microRNAs (miRNAs) podem estar fortemente relacionadas com resposta ao tratamento fármaco-terapêutico, controlando as proteínas envolvidas na farmacocinética e farmacodinâmica. Entretanto, os principais miRNAs que atuam na dinâmica da resposta medicamentosa ainda não foram bem definidos. O objetivo deste estudo foi avaliar o perfil de miRNAs no sangue total periférico, procurando melhor esclarecer os mecanismos envolvidos na resposta aos antiagregantes plaquetários AAS e clopidogrel. Para isso, selecionou-se pacientes com DAC, os quais apresentavam diferentes respostas à dupla terapia de antiagregação determinadas pelo teste de agregação plaquetária. Baseados nos fenótipos, os perfis de expressão de miRNAs foram comparados entre os valores da taxa de agregação categorizados em tercis (T) de resposta. O grupo T1 foi constituído de pacientes respondedores, o T2 de respondedores intermediários e o T3 de não respondedores. Os perfis de miRNAs foram obtidos após sequenciamento de última geração e os dados obtidos foram analisados pelo pacote Deseq2. Os resultados mostraram 18 miRNAs diferentemente expressos entre os dois tercis extremos. Dentre esses miRNAs, 10 deles apresentaram importantes alvos relacionados com vias de ativação e agregação plaquetária quando analisados pelo software Ingenuity®. Dos 10 miRNAs, 4 deles, os quais apresentaram-se menos expressos no sequenciamento, demonstraram os mesmos perfis de expressão quando analisados pela reação em cadeia pela polimerase quantitativa (qPCR): hsa-miR-423-3p, hsa-miR-744-5p, hsa-miR- 30a-5p e hsa-let-7g-5p. A partir das análises de predição de alvos, pôde-se observar que os quatro miRNAs, quando menos expressos simultaneamente, predizem ativação da agregação plaquetária. Além disso, os miRNAs hsa-miR- 423-5p, hsa-miR-744-5p e hsa-let-7g-5p mostraram correlação com o perfil lipídico dos pacientes que, por sua vez, apresentou influência nos valores de agregação compreendidos no T3 de resposta a ambos os medicamentos. Sendo assim, conclui-se que maiores taxas de agregação plaquetária podem estar indiretamente relacionadas com os padrões de expressão de hsa-miR- 423-3p, hsa-miR-744-5p e hsa-let-7g-5p. Sugere-se que a avaliação do perfil de expressão destes 3 miRNAs no sangue periférico de pacientes com DAC possa predizer resposta terapêutica inadequada ao AAS e ao clopidogrel


The antiplatelet therapy is often indicated for the prevention and treatment of cardiovascular diseases. Dual antiplatelet therapy with clopidogrel and acetylsalicylic acid (ASA) has often been adopted in patients with coronary artery disease (CAD), but it has been ineffective in a significant portion of the population with genotype of responders. This fact leads us to question whether other molecular mechanisms may be influencing the response to these drugs. Recent studies suggest that small non-coding RNA sequences known as microRNAs (miRNAs) may be closely related to response to drug-therapeutic treatment, controlling proteins involved in pharmacokinetics and pharmacodynamics. The aim of this study was to evaluate the profile of miRNAs in whole blood, looking to better clarify mechanisms involved in ASA and clopidogrel response. For this purpose, we selected CAD patients who showed different responses to dual antiplatelet therapy determined by aggregation test. Based on the phenotypes, the miRNA expression profiles were compared between the platelet aggregation values categorized into tertiles (T) of response. The T1 group consisted of responding patients, the T2 consisted of intermediate responders and the T3 consisted of non-responders. The miRNA profiles were obtained after next-generation sequencing and data were analyzed by Deseq2 package. Results showed that 18 miRNAs were differentially expressed between the two extreme tertiles. By Ingenuity® software prediction analysis, 10 miRNAs showed important targets related with activation and aggregation of blood platelets. Of the 10 miRNAs, 4 of them, which were down-expressed on sequencing, showed the same fold-regulation when expression profiles were analyzed by quantitative polymerase chain reaction (qPCR): hsa-miR-423-3p, hsa-miR-744-5p, hsa-miR-30a-5p and has-hsa- let-7g-5p. By target prediction analysis, it was observed that, when the four miRNAs are simultaneously down-expressed, they predict activation of platelet aggregation. Furthermore, hsa-miR-423-5p, hsa-miR-744-5p, and hsa-let-7g-5p showed correlation with the lipid profile of patients which, in turn, demonstrated influence in aggregation values reaching T3 of response to both drugs. Therefore, we concluded that increased platelet aggregation rates may be indirectly related to the expression profiles of hsa-miR-423-3p, hsa-miR-744-5p and hsa-let-7g-5p. It is suggested that the evaluation of the expression profile of these three miRNAs in the peripheral blood of patients with CAD may predict inadequate therapeutic response to aspirin and clopidogrel


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Coronary Artery Disease/pathology , Platelet Aggregation Inhibitors/pharmacology , Aspirin/pharmacology , MicroRNAs/analysis , Gene Library , Polymerase Chain Reaction/methods , Biological Specimen Banks
19.
Chinese Journal of Biotechnology ; (12): 204-211, 2016.
Article in Chinese | WPRIM | ID: wpr-242300

ABSTRACT

Multidrug resistant genes are highly expressed in hepatocellular carcinoma that seriousty affects the effect of chemotherapy. Screening of resistant genes from HCC cells and studying its mechanism of drug resistance will be helpful to improve the effecacy of chemotherapy for hepatocellular carcinoma. Here we described an alternative method called cyclical packaging rescue (CPR). First we constructed a retrovirus cDNA library of hepatoma cells and used it to infect fibroblasts. Then we added drugs to screen survival cells. The survival cells, stably integrated helper-free retroviral libraries, were recovered rapidly after transfection with plasmids expressing retroviral gag-pol and env genes. Through this method, retroviral RNAs were directly repackaged into new infectious virions. Recovered retroviral supernatant was then used to reinfect fresh target cells. When performed in concert with selection using functional assays, cDNAs regulating functional responses could be identified by enrichment through multiple rounds of retroviral library recovery and retransmission. Using CPR, we obtained several cDNAs. After a preliminary detection, we found Ribosomal protein S11 (RPS11), Ribosomal protein L6 (RPL6), Ribosomal protein L11 (RPL11), Ribosomal protein L24 (RPL24) possibly had drug resistant function.


Subject(s)
Carcinoma, Hepatocellular , Genetics , Pathology , Cell Line, Tumor , DNA, Complementary , Drug Resistance, Neoplasm , Genetics , Gene Library , Genetic Vectors , Humans , Liver Neoplasms , Genetics , Pathology , Plasmids , Retroviridae , Ribosomal Proteins , Genetics , Metabolism , Transfection
20.
Chinese Journal of Biotechnology ; (12): 966-974, 2016.
Article in Chinese | WPRIM | ID: wpr-242283

ABSTRACT

RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.


Subject(s)
Aptamers, Nucleotide , Gene Library , Heterogeneous Nuclear Ribonucleoprotein A1 , Genetics , High-Throughput Nucleotide Sequencing , Humans , RNA , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL